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Lecture 09107 Introduction

' Logistics
- cs.cmu.edu/-sandholm/csl5-888F2l/
- Tuomas Sandham

,
Gabriele Farina

- 50% project, 40% homework
,
10% participation

- No textbook

. Multi-step imperfect information games
' Most similar to real world - incomplete information

, sequential1simultaneous moves

- Heart of problem
- I agent : expected utility maximizing strategy well-defined
- Multi agent : best strategy depends on others

- Terminology
- Agent : player
- Action Imove : choice agent can make at any point in the game
- Strategy si :

mapping history (from agent i pout → actions
-

Strategy set Si : strategies available to agent i
- Strategy profile 19,5, -

n

, Sim ) : one strategy for each agent though nature test,5FoEi%)
- Utility : Ui = Ui (syst, . . .

,Gail, can include nature for uncertainty
- Agenthood

- Agent wants to maximize expected utility
- Utility function Ui of agent i maps outcomes to reals

- Utility functions are scale- invariant
- Agent i picks Max

strategy
E
outcome p (outcome l strategy) Ui (outcome)

- If Ui
'

= avi tb for a>o then agent picks same strategy under ui and Ui - note Ui must be finitefor comparisons to work
. Inter-agent utility comparison problematic

' Game representation in combinatorial u er re RR

explosion U im in 3.4 34

i. Em'T.fr?fiYnfrtmreaf,sFIa7egicformoEFiIIFs "
o " "

" " s

f
s
- i

= other player's strategy
- Dominant strategy equilibrium

- Best response si : for all si
'

, Ui LSE
, sit ZUilsiis.it

. Dominant strategy six : si is a best response for all Sei , i.e ., ts.itsiuisiis.ilzuilsiis.it
' Doesn't always exist
- Inferior strategies are dominated

- Dominant strategy equilibrium : strategy profile where each agent has picked dominant strategy
- Doesn't always exist
' Requires no counterspeculation
- Prisoner 's Dilemma

g, ¥3. " Dominant strategy is IBD)



Lecture 09107 cont.

- Nash equilibrium
- A strategy equilibrium is a Nash equilibrium if no player has an incentive to deviate

from their strategy given that others do not deviate
. For every agent i, uilsits.it Z nisi, s-it for all si , ice

,
for fixed Ei Hsi Ui is.if Uisi,si)

- Dominant ⇒ Nash
,
not vice versa

boxing ballet

boxing 2, I e- 0,0 Nash equilibria
ballet ofo→ 1,5 (boxing,boxing) , lballet, ballet

- Criticisms
- Not necessarily unique

- Refinements (strengthenings) of equilibrium
' Eliminate weakly dominated strategies
- Choose Nash w/ highest welfare
- Subgame perfection

- Focal points
- Mediation
- Communication
- Convention

I, O
→ 0,1

- learning r t

' Does not exist in all games
on ← " O

' Existence of pure
-strategy Nash equilibria

- Theorem
at every point, agent whose turn it is

Any finite game ←
to move knows all moves so far

where each action node is alone in its information set
is dominance solvable by backward induction (as long as ties are ruled out)

. Proof by construction
, multiplayer minimax

- Mixed - strategy Nash equilibria
- The essence of being simultaneous is knowledge
. Still can draw same tree

, just Player 2 doesn't know which state they are in
- Dashed line for information set

move
o.o

- Bayes
-Nash equilibrium : each agent uses best- response strategy and has consistent beliefs

R
'

PI
i,
- I

mpYe - '
. .

. RPS has symmetric mixed-strategy Nash equilibrium where each player plays each
sF

,

information sets ,
Pure strategy with probability

'

13

FINE;ns:÷÷:/
' In a mixed.- strategy equilibrium, each strategy in agent i 's mix has equal expected utility

- Existence and complexity of mixed strategy Nash equilibria
- [Nash 50] Every finite player, finite strategy game

has at least one Nash equilibria if we admit
mixed - strategy equilibria as well as pure

- 2 - player O-sum → polytime w/ LP
. 2-player games → PPAD

-complete (even with 011 payoffs)
" NP- complete to find even approximately good Nash equilibria

' 3- player games→ FIXP- complete



Lecture 09107 cont.

' 2 -player O-sum games
- Swappability : if lxy) and ④ y

') equilibria, so are lxsy) and Hey 't
- No equilibrium selection problem

- Equilibrium strategies form bounded convex polytope
- Any convex combination of a player's equilibrium strategies is an equilibrium strategy
. [von Neumann 1928] Minimax thm .

set SER
. Let XCIR

"

,
YCRM compact convex sets. . compact : every sequence in S has subsequence

' tf f : XxY→ IR continuous concave- convex, converging to a point in S
- convex : contains line segment between any 2 points in set

ft,y) concave for fixedy x , ,xrES, O El ⇒ ox, -14-01×2 ES
function f 0h interval I

,f-Hit convex for fixed x f- faith -OHH)
- then :c::c:: : :::*: :c:iii :*:÷::::i:*

. ...... .
Fff fff flag) = Ye'T YET flag)

expected
- Great for multi- step imperfect information games

value

- Opponent can play non - equilibrium to cause our beliefs to be wrong, but not enough To raise
'
EV

- solvable in polytime (size of game tree) using LP
- Game tree may be in feasibly huge, 10165 eg

Lecture 09109

. Comparison
simultaneous Games Sequential Games
o
'm Q

convex polytope convex polytope
Multi-Bilinearity of expected utility Multi-Bilinearity of expected utility
Nash equi in 2-player O-sum is nigga, myienomxtay Nash is now Feaf

, myieqxttty
Low # of vertices Combinatorial # of vertices

- Set of actions A
- Strategy is probability distribution over A

x= (¥}) 20 where Xrtxptxs- l

X
, Edm

Xzf DIAL ¥! !#
RHP ' Ks )

(KR, Xzp , Ks )

- Nash equi in 2-player O-sum simultaneous
' P

,
commits to strategy xEd

"'

' Pz plays y*=ar9yma× UrHy) = army
ax

xthzy
- P
, can expect to receive utility gal = -UH,y9= my'¥xtA,y

'

player I in Kuhn poker player 2 in Kuhn poker
- Sequential Games ex

*
. Decision nodes o Talk
' Observation nodes

""¥1bet eh Eset
ch Yet a et

ca old L L

+ t
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Lecture 09109 cont.
calculating expected utility needs product
rn.

• Behavioral strategy 10.1.0.9; as, as; . .; 1.go.co)
probabilities on
game tree branches

- Causes non-convex problems because objective contains products of own variables
- Sequence form strategy 10.1/0.910.5×010.5×0.1; . .; 1.90.0)

- Pre -multiply
0.14%09 0.14%0.9

÷¥&¥
.

→

¥¥É¥s
' Check goes from

"
sum to 1 " to

"

sum to parent
"

i ✗ is a valid seq form strategy iff
① ✗ 20

② Iaea; ✗ [ja]
= ✗[Pj] V-j note pj of a j with no

③ ✗ [013=1 parent is denoted pj=p

- We denote valid seq form strategies as Q

• Deterministic strategies ←
for 0

- IT = Qn [0,1]
" where n = I 1- Ej IAJI

=y
flip all coins upfront

- Lemma : Q= convex hull of IT
flip coins as needed /

same thing
• Usually 111-1 exp in size of tree

• Inductive Q construction

☒? Q=Q
,
✗Qz

Oj
% f- a Q = la ,Hinault -Hoh )| :c, taeo, qEQyqEQz}

= convex hull of { (g) ,
,
) } - = vertical ;

• Only 3 operations
. Cartesian product
' convex hull
'
"

Padding
"

Lecture 09114

'

Regret : look at game history, do we regret any action taken
• The player has learnt to play the game } Hindsightwhen looking back at the history of play, rationality
they cannot think of any transformation 9 : ✗→✗ of their strategies
that when applied to the whole history of play would have given a strictly better utility to the player



Lecture 09114 cont. One f- one game, e.g., one poker hand

• E-regret minimizer for set ✗ I
• A device where at every time t
① NEXT STRATEGY : output the next strategy ✗

+
EX

② OBSERVE UTILITY let) : et :X→R linear function where Xt scores a utility of lift)
• Quality metric : E-regret

R¥=¥E¥É, etioix)) - e-4×-9
' Goal
Have guaranteed RÉ=ot) no matter the sequence of utility functions

• Note that I is a set of functions from X to X

- Notable choices for E
- E is the set of all mappings ✗→✗

-

"

swap regret minimization
"

• Converges to correlated equilibrium
in normal form and extensive form

,general-sum, multiplayer
• § =\ a→b

: a,bEX} where 0a→bH)= ✗ if ✗ta
,
b if ✗=a

•

"

Internal regret minimization
"

- Only one swap
• E- constant functions from X to X

• OI = 1% : ☒ EX} where 0*1×1=17 ✗EX
'

"

External regret minimization
"

- In 2-player 0-sum games ( extensive form/normal form)
then external -regret-minimizing strategies
converge to Nash equilibrium 1in averages)

Tie
, maybe no strategy converges

but the average of all strategies will

• In general- sum multiplayer games (extensive form/normal form)
then external - regret-minimizing strategies
converge to a coarse correlated equilibrium (in empirical frequency )

- In general - sum multiplayer gam
mediator enforces a certain strategy

if all but one player stochastic
and last player uses regret minimizing strategy
then last player strategy converges to best response

- [Gordon
,
Greenwald

,
Marks 08]

WANT : E-regret minimizer for ✗ , ROI
HAVE :①an external regret minimizer for IT , R

② for any IOEÉ we have a fixed-point oracle, ✗ 3- ✗ = 01×1



Lecture 09114 cont.

• [Gordon 08] cont

Algorithm 72¢ at each time t

① NEXT STRATEGY

lot ← 72 NEXT STRATEGY

return ✗
+ c- 4+1×-4 c-✗

② OBSERVE UTILITY 11-4 lt : ✗→ R linear
define Lt : to→ ltolxt)) Lt:$→ R linear

R OBSERVE UTILITY (H)

- 12¥ of 72¥

5¥ = FEE FÉE-40^1×+1) -e-4×-9]
= FEE, .EE/etloTlxtD-eY0-lx-4D via fixed point oracle

= FEE.E.IE#-Ltli-D
= external regret on the set of
"

strategies
"

OI for R

Lecture 09116

- Bilinear saddle-point function
Max min

✗TAY
✗EX yEY

-Models
- Nash eq in 2-player 0-sum games
• 0-sum team games
- Optimal correlated equilibrium

• Idea : self -play
• Have : Rx external regret minimizer for set ✗

Ry external regret minimizer for set Y

t- l
t -11

→④ ☐

Atyt ☒→

→⑤EH ☐
✗☒→

A-txt

isaddle -point gap
"

815,51 =/Fff itay-x-tn-yf-f-tn-g-nfci.nu, ✗TAJ)
IF 20 20

- 8 often called exploitability



lecture 09116 cont.

• RI = FEE -2¥ , (Ay-4+1×1×-4 = FEI EE, ITAyt - EÉ , Ayt

• Rj = YEFE-i-IC-A-x-yfy-y-Y-nggy-ZE.fi#AytE-i-=iH-YA
yt.RI-RI-FEEEE.I-Ayt-YEFEE.tn/-YTAy

= FEE ⇒ ItAye - FEY ⇒ 1×+5'Ay^
=T[Ff¥ ☒A -4¥, yt) - F¥, ÉÉ⇒¥ÑAy^]
= 81×-15) where E- f- EE ,

xt

g-= f- EE, yt

-
n = } (✗ii. "/Xn ) ER"zo :X, -1 . . .tl/n-- I}

- Goal : construct an external regret minimizer for on
- NEXT STRATEGY output ✗

*
C-On

- OBSERVE UTILITY let é : on→R linear

rt-FEEI-E.IE#-eYx-YH--OIT-)
' Blackwell game

lxiy, us)
• ×,y are closed convex strategy spaces
• u : ✗✗y →Rd biaffine utility of the game for player I
' 5 is a subset of Rd

,
closed and convex, target set

- Blackwell dynamics
① Player 1 picks an action ✗

+EX

② Player 2 picks an action ytty
③ Player 1 incurs payoff u# y-9 ERD

- Blackwell game goal f- EE, ulxt,yy→s

7%1/1=-24×554-5140 as 1-→a

.p:=kÉR",yÉ:o)
t I

ulxt
,
et) i

-

- et - Cet,#I ER
"

where 1=1 ";) ER"
• RT = MEEEEE , Let, I>- EÉ ,45×+7

• Lemma F- ⇐ FÉIR:O 115 - i-E-E.in/xTe-Y1h
-

distance of f-Eulxte-4 from 5



Lecture 09116 cont.

' HERD halfspace
1-1=1 HERD : ath Eb} for some atRd BER

. Forceable halfspace
H is forceable if I✗

*

EX a forcing action such that

Ty EY u#g) EH

- -1hm by Blackwell
Blackwell goal can be obtained if every halfspace HZS is forceable .

At every t, Player 1 plays like this :

① Compute lot =# E i ulxiyi)
① Project lot onto 5, call the projection Yt
③ If totes

, equivalently 4-1=47 then play any ✗
+EX

④ Else consider the halfspace H* tangent to 5 at 4T and contains § then play any forcing
action for H*

⑤ Observe yt, incur ulxty-4, and repeat,

lot

\•••) get your average
in the set

• Proof sketch
qt-11 = ¥ lot+ Eu#54
dis-119++1,5%11 lot

"
- y-41?

= 11¥54EUR549-4-415
,
note F' = ¥5444T

= 11¥#-4-4+441×754-4-411I
= His-114594¥Hunky-4-54kt ¥-411.410T- Yt, ulxty-4-4+7
-

Use alg construction

so dis-1110++151's dis-110;D . + ¥11 u y-9-4-45 to show so , so
term can be ignoredat It- it dis-114755 F)

✗the at -1041 ⇒dt-O-40-t-f-ltd.is-110755
⇒ dis-11059--04=+1

' Blackwell for P game earlier
① 0-1=4--2

'

ulxt.y-y-EE-E.ie?C-ix%120S--1RIo,Yt--[09
-

③ If lot ES do anything

④ If 4-1=10-1 HEIZER
" :(0+-4-417<-0}
(10-109)+7<-0
110-9+5Zeo



Lecture 09116 cont.

• Is it true that tot, there exists ✗
*

stv-l.tk
"

u ☒ *
,
e) C- Ht

⇒ ([ lot]-4+4-4×+711<-0
et 9+-11-1×-4110951<-0

IT
[ 0-9-1

- txt so

✗
* =E¥¥=on

Lecture 09121

• Algorithm
- At every t,
① lot ← ÷, -2¥ ulxtl-4
② yet ← [lot]

-

[0+5
'

③ If 4+1=01-1 then play it#+
Eon

else play any point in On

④ Observe et and iterate
• rt=-- 1) lot

• Regret Matching
. r°←O

,
✗
°
← In C- On

- function NEXT STRATEGY 1 )
ft←fit
it 0-+1=0 then output ton

else output 41 Eon
' function OBSERVE UTILITY

.pt-11 ← rttet -69×-41
' In practice, faster to [ It the updates

- Regret circuit for Cartesian Product
• Setting

- Sets X and Y
- Regret minimizer Rx, Ry

- Goal
• Regret minimizer for ✗✗Y = } Kid : ✗EX,yEY}

- function NEXT STRATEGY - function OBSERVE UTILITY where life-4,1-4)
✗
+
← Rx . NEXT STRATEGY Rx .

OBSERVE UTILITY Ctx)
yt ← Ry .

NEXT STRATEGY Ry . OBSERVE UTILITY (1-4)
Output 1×-1,54



Lecture 09121 cont.

'

RT =
Max

kid -2-5=14×94-47×751 - II.ejytxtyt
=

(Fff, EE , hiiiteyttg-h.tt#-eyttyt=eIF1-zE,eEti-eitxt)tfEE,eyt-'g- ejiyt}
=/F¥×EÉ , eÉñ -1¥ + (FEY EE , eytty - eyttyt)
= RE + RI

-

thingy ,☐÷É④☒→*yy
↳7⑤É

- Regret circuit for Convex Hulk
• Setting

- Sets X and Y
- Regret minimizer Rx, Ry

- Goal
• Regret minimizer for co#Y) = } A.✗ thy : ✗EX,yEY, ✗ c-of c- Rn

• Need
• Any regret minimizer Ro for 0

- function NEXT STRATEGY

✗
t
← Rx . NEXT STRATEGY

yt ← Ry .
NEXT STRATEGY

At← Ro . NEXT STRATEGY

Output xixttxiyt

- function OBSERVE UTILITY let) where life-4,541
Rx .

OBSERVE UTILITY (t)

Ry . OBSERVE UTILITY µ)
Ro . OBSERVE UTILITY (lot)
where to :(and→ diet + nitty-4

• Rt-zc.TT#yjEE,(ettE-e-ilaix-4-aiy-Y]
= it ;%¥" EE , [ettlñiitñii) - e"ki×t+aiyY]
=¥§¥¥✗|Ñ, EE, titi -1 i.EÉ , etty} - EE, e-ilnixttiiy-4
= Fe I ii. IF:& -2¥ e-iiltihlFE.EE?,etty)1-E-Eie-ifxixt+xiy-4
= FEE hi, + E-E.ettx-Y-ihlR-y-EE.ie#ytH-EI=,e-iYxixt+xiy-4
C- FIG Ii, ⇒ ettx-Y-i.EE, ettyt)) -EE,

e-"454-4544 + max IRI
,
RI
, }

= i.TT/EeT=,iyetTxt-xietty+-atetTxt-diettyt} + max IRIAF}

= Not max }RIRI, }
←

(;¥¥YY ¥1



Lecture 09121 cont
.

- Recall inductive Q construction
• Can essentially ignore padding in convex hull

• CFR
- Need Rj for every decision point j , a regret minimizer for 01%1
• fn NEXT STRATEGY 1)
b-'←Construct behavioral strategy that picks actions Aj at each j with probability Rj . NEXT STRATEGY 11
output sequence form representation xt of bt

- fn OBSERVE UTILITY It)
At each j , construct the IAJI dimensional utility vector

ltj [a) = ltlj a) 1- E.a.⇒a xtljtitélja
']

Lecture 09123 Speeding up CFR

- This lecture covers SOTA -2019
- Convergence of CFR

- Cumulative 011=11
< Average 017=-1--01*-1

- Technique : Alternation
' Normal CFR : update agent 1 and agent 2 based on opponent strategy in -1-1
- Now : update agent I based on agent 2 in -1-1,

update agent 2 based on agent I int
- Converges faster in practice, still provable 04=11 cumulative regret [Burch TAIRA]
• Motivation : update each agent based on newest strategy of each opponent

- Technique : Re -weighting
- [Brown

,
Sandham

,
AAAI 19]

• Motivation
- CFR-1 was fastest

,
but has limitations

Iteration probabilities 43,113,43④ I expected reward is -333333

regret to update regret as action ev- achieved ev
↳ regrets become 333333 , 333334 , -666667reward ok regret prewar, "

reinard 1
-nooooo

2 probabilities 42,42, 0 floored to 0

expected reward 20.5
update regret becomes 333332.5

, 333334.5

- Causes CERT to take 471407 iterations to learn to pick middle with 100% probability
- Solution

' Discount early bad iterations
'

regrets and average strategy by weighting iteration t by t
• Called linear CFR
' Takes 970 iterations to learn to pick middle action
• Worst case convergence bound only increases by 453



Lecture 09123 cont.

- Theorem
.
For any sequence of nondecreasing weights,

① Suppose T iterations of Rmt in 2-player 0-sum games
② Then weighted avg strategy profile, where iteration t is weighted proportional to we>0 and wisw;
for all icj , is a

¥¥w
,
01--11 ITAI TT- Nash equilibrium

- At least for now, smart reweighing doesn't seem to pay off
- Too much to store
- Time could be spent on just doing more CFR

• Linear CFR-1
- In theory, yes
' In practice, does very poorly

- Discounted CFR
,
a less aggressive combination IDCFR)

< On each iteration
,

- multiply positive regrets by ¥+7
• multiply negative regrets by 1¥
- Weight contributions to average strategy by 1¥10

- For a-4.5
,
P-0,8=3 consistently outperforms CFR -1 in practice

• p=D = no discounting = vanilla CFR
i A- I = linear CFR
- p = - a = CFR-1

- Worst case convergence bound only a small constant worse than CFR

' CFR-1 also works better when assigning iteration t a weight off than -4 empirically
• The relative ranking is mostly the same across games for the empirical graph shown

• Monte Carlo linear CFR
- CFR -1

,
DCFR do poorly with sampling

- Linear CFR does quite well with sampling
- DCFR > CFR-1

,
was SOTA in large imperfect information games

• Linear TODO COPY

• Technique : Dynamic Pruning
- Why not permanent pruning like xp pruning in perfect information games

?

• Game tree can change !

< [Lanctot ICML097 Partial pruning
- If opponent 's probability of reaching there is 0, safe to prune



lecture 09123 cont
.

' IBrown
,
Sandham Neurlpsts] Interval Regret Based Pruning

- Also prune paths that agent reaches with 0 probability
- Must be temporary !

' Action a c- AM such that otl , a) =D
' known a will not be played with positive probability until far future iteration t

'

' In RM
,
Rtl
,
a) <co

• To find t '
, project conservatively or check dynamically

• So we can procrastinate in deciding what happens before a on iterations -4-1+1, . .

;
-14

-

Upon reaching t
'

,
instead of t

'

- t iterations over DX,al, just one iteration playing the average
of the opponent's strategies in those missed iterations

,
and declare we played that strategy on

all those missed iterations
- All other players can partial prune a out

- Total Regret Based Pruning

• Check slides for the rest

strategy = (Kiki xnxx.in .)

space → quantization?
A →

not true£
accuracy? 0amMentions ? more?

Pa%¥÷¥¥É
ZoroMB limit

drops rng

tartan iam8 / baby



Lecture 09128

- Recall Regret Minimizer from before
' NEXT STRATEGY outputs C-✗ c-Rn

' OBSERVE UTILITYHt) It ER
"

. RT = FEI EE , TI -Wit
' Goal : RT= 01T)

- Predictive Regret Minimizer
' NEXT STRATEGY Cmt ERM outputs xt taking into account a prediction Mt for the next utility et
' OBSERVE UTILITYHt) t ER

"

. RT = FEE

E-E-ile-YI-e-4-xt.RU
U bound [Syrgkanis 15]

•

Regret bounded by variations in utility
< RTs ✗ + BE -5=111 et- m-41*2--8E-E-zllxt-xt-yp.tlv11*

= dual norm = MY "¥
- 11.11

,
→ 1111¥ Hills

- 11.112 → 11112*-41112
- II. Hp → 11-14*11 - Hq where tq-1,5=1

- Accelerated self play
- Setting : 7¥ 7¥, ✗+Ay

☒ ☒ ☒→ " .

☒¥☒¥¥☒→ . .
.

- Rx and Ry satisfy RVU bound
• I = f- Etf , Xt
- g- = f- EE, yt
• Mtg = Ayt

-1

- my = - A-1×-1-1
• Fact . 8*1,54 E ¥ (12×-1-112-4)

+saddle point gap

• 81×-554<-4-42×1--1RF)
⇐ f- 12×-1PEE , 111¥ -MIKI -8-25=211×-1×-411

'

+PEE , It ety - mtyll-x-8-ZI-zhyt-yt-it.ly
E E 12×-1PEE , HATE-HIII -8 -2%11×-1×-4112

+PEE , HAIyt-yt-YHI-y-zE.zyye.ge, my
note "M 2-¥-11MHop 112-11

a- ¥ [AtPHAHip-ZI.ir/lxt-xt-YT-8E-i-=z11xt-xt-yptPI1A11ipE-i-=rHyt-
yt-yi-8-2-I-zllyt-yt-yp-BHAllopllyti-PHAM.pl/xYP)

c- 0¥



Lecture 09128

• predictive FTRL follow the regularized leader
- ✗ ER

"

convex
, compact set

- 4 : ✗→Rtstrongly convex
•7 > 0 stepsize

- fn INITIALIZED :c← 0 ER" where at everytime T, E-ZÉ , let
' fn NEXT STRATEGY (Mt) :

returnargmaxiexkt-1-m-yi-EYH.tnOBSERVE UTILITY 154 : Lt← Lt
- 'té

' Predictive OMD online mirror descent
' ✗ c- Rn convex and compact set
• 4 : ✗→R 1- strongly convex
• 7>0 stepsize

- fn INITIALIZE1) : £← any z^ EX :P 412-7=0
' fn NEXT STRATEGY (Mt) :

returnargmaxiexlm-YI-z-Dyfillzt-H.fmOBSERVE UTILITY Ht) :

2-
+
←

argmaxzzxlfe-YE-T.DE/EHz-+-Y)iDylallc)--YCal-4l4-Cvycya-c7
• If 6=511 -hi
then Dylan c) = thalli -5114k-0¢-4

= Illall} - Ekiti - EA tic
= tzllalli -1411417 - EA
= { 11 c-alli

' argmaxiexgti.tnDyed
=

argmaxggxgti-ztylli-dk-argmaxgexzgti-EHE.lktix
= argmax *✗ -Elli-17g-141K
= Projxthgtc )

- -1hm . Let R be the range of 4 over ✗

52=7,97×4*-61×4
Then at all times T and for all 770

12--1<-2-+2 ,

/let-m-41*2 - FzEÉ, 11×-1×+41
'

where [ =/
4 for FTRL
8 for OMD

and 11.11 is the norm for which 4 is 1-strongly convex
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- For FTRL
, argmaxxnex atx - 541×7 = argmaxxnex Bats -41×7 = Pop a)

' For OMD
, argmaxxnex ATI - f-Deline)

-

argmaxgexci-I-y-DYDIIM-argmax.ie✗
atx - 441×7+5941-5 941T£-c)

=

argmaxiexati-y-H-1-ypyafx-argmax.ie✗ la-15 41454I - ty4☒
= Py*( at :-p ee )))

- Def. 4 :X EIR
"
→Rn is

"

nice
"

if the following quantities can be computed in 041 time
① 74¢) to EX

② Poi (a) = argmaxgrex a-1×-41×7

- For ✗ton a
"

nice
"

regularizer is
, among others,

41×1=-2 ✗i log ✗i

¥. 4K) =/ + log ✗i

② : Argmaxxeyzn EE, aixi
-Eia Xilogxi , Ei! , Yi -4 , xizoti

By Lagrange multiplier theorem,
LHA) = -2 tixi

-Exilogxi - ✗ (Exi
- 1)

8×1*4=0 when

3*4×4×1=9--1- log ✗ i -4=0
⇒ log xi=9i -1 - ✗
⇒ ✗c-

= exp lait
- ✗ I

⇒ * =¥¥g÷,
so Py*&) = softmaxca)

=lE¥Ip¥→i

-What about 41×1={11×11} ?
☐pit ✗

But then argmax☒ c-on a-1×-111×14 is
"

hard
"

to solve

•What about sequence form polytopes
41×1=-2-2 Wja

- ✗[ja] log ✗ [ja]
jEJaEAj

where wja 's are chosen recursively according to

Wja
= 8J

- ¥É;a, 8J '

Jj =\ -118¥; /p¥É;a% '} 21
• 41×1 is nice and 1- strongly convex worth



Lecture 09130 cont.

- Predictive Blackwell game
- Before ✗ plays, they receive prediction HERD of the next utility
• Consider only Scone

• Take R a regret minimizer over set 50=1 YER
"
:<y,x>eotxts} C Bz

tn Next strategy lvt)
0¥72. Next strategy Ivy s#)s
output a forcing action for HEWER

"

:<* 0-7<-0}
fn Receive Payoff lucky-4)
B. Observe -Utility /ulxty-41

'

Ignoring vt for now,
min

jeg
115 - ✗112 = Max

4×7
=
Max (§×>

its:$
,

11511 5ES°nB

ds#Ev#541=5%115 - f-Eu#5911
=
Max < 5 , f-Entity-97

SET 11511

= 7%0 f-EÉ
,
Get>

= T.Ysoi-TIR-4-z-iiso-t.ee] REFEEE.E.es,e7 - EÉ, Cote-9

By nBz, eliminate 11511 in denominator'T
- . .
I f-RT

tote

Lecture 10105

- A halfspace H that contains the target set 5
is forceable if 3- ✗

*
EX tyEY u#g) EH

We call ✗* a forcing action for H

UH,e) = e-He? I Regret matching
① Blackwell alg

¥ a- TYR:O 115 - f-Eullt, 54112 ② FTRL with Hili

Predictive Regret Matching
① PFTRL with III.Hi

Regret Matching Plus. Regret Minimizer , Abernethy 's ① OMD with III.hifor IR?o , e.g. OMBFTRL Algorithm Predictive Regret Matching Plus ← SOTA for
① POND with III.Hi non-poker

/poker is odd
in general,

V e.g. there are

Blackwell 's Blackwell Game Regret Minimizer really bad actions )

Algorithms +
ftp.rn.ui.HR:o)

"
on on

predictive generally
(regret matching) better except in

poker where = same

Different paths to RM/Rmt
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' D) FTRL
fn Next strategy 1Mt)

return argmax / (Lt
- '
+me)T×^ - by 41×7}

☒ EX

fn ObserveUtility Il -4
Lt ← Lt

- '
+ et

' B) OMD
fn Nextstrategy (my

return arqygkm-YI-h-Dyl.in#-y}
fn ObserveUtility let
zt ← ar¥? he-4¥ - f- DahillEY}

• Abernethy's algorithm
.tn Next strategy 1)

D-+ ← B. Next strategy 11
return forcing action xt for Ht=/ × :(40-7<-0}

- fn Observe Blackwell Payoff lulxty-4)
72. Observe Utility lucky -41

- For today, 72 regret minimizer for 5° instead of 5h Bz
and it is either FTRL or OMD no matter 7 or 4

- Fact. Define RTI) = -24-4 I --2K¥
For POMD and PFTRL : HIEX RTI)e

"¥ + y -211 et-m-41*2

•

7¥11 5- f-Eu(✗55911,
=
Max

5E5nR ( f-Eu#54, 5)
Max

=

5 c- sonBiff -21757

=¥§F§n☒. -2457--24507] -14--2650-+7
¥

= ¥ Max

SERB,
RTS)

→ 0
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' Take Blackwell 's game 1?

Use Abernethy's alg to solve P
,

R= FTRL
, 4=1-211.115 , domain Rhzo

.

fn Next strategy 11

o-t-argmaxyyy-ytx-z-ylk.lk }ItREO
=
argmax
* c- Rio / - Elli - L"Hi }

= III. 111*-71
"

Hi}
= projpg.ME

')
= [ HE'T ER?o

☒ ← ftp.t
return xt

" fn ObserveBlackwell Payoff ( ulxty-4 ER
")

Lt ←Lt -1+4*454

• -1hm . predictive regret matching guarantees regret
RTs Max

a- RionBz % +7 Ella#y-y-v-YL.ity> o

E Ty -17-2114×554-v41I

E) 2-211 u#54 - v41;

Lecture 10107

- Monte-Carlo CFR : standard sublinear method
' Suppose only one leaf nonzero util

Then all other paths have util 0

•

" Importance sampling
"

'

1¥ )
"
coin with 3 faces

"

(uniform )

flip /→ 1%1
,
z→(%)

,
3→ (§, , }

"^ 9""""" +0 Riki B instead of uniform
valises 1,43 just fi instead of 3
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- An unbiased estimator for Ayt can be computed by
① Pick unbiased estimator it for yt
② Compute Agt
Note : It can be very sparse

.VN/,y)=xTAy--Ez-
terminal UIZ) (IT all actions for Pti) (T1 all actions for ph) ft all nature actions)on path -1oz On path to 2- on path to 2-

but recall ×,y already in sequence form
= Ez terminal 412-1×[912-1] y [042-1] Penance ft)

we will show an unbiased estimator is
① Pick 2- with distribution penance# y@it)] FIQH]
② Consider vector "⇒

I [0112-1] lol#
← basis vector

, 1 where 0,41 is ER
#

This is known as outcome sampling
R

-

et sampler ñ
HEXs ☒ get

• The degradation in regret due to sampling
IRT- RT is upper bounded by 12T log 's 1Mt in) with probability 21-8 t 84-0,11

T T
maximum maximum

- Proof a little involved, range of et range of it

Azuma Hoeffding on martingales
' But overall

, sampling does not hurt much
- In practice : for games where CFR can handle it

, just using CFA is faster

but for huge games, MCCFR preferred for sublinear

> This concludes CFR
,
online learning . Now, offline learning .

' Note . First order offline optimization has no theoretical/practical benefits over online
.

• Offline optimization
⑤First -order saddle point solvers
⑤First-order gradient descent based
!Methods based on the linear programming formulation

-④ 7.9¥ YET ☒Ay
. Excessive gap technique [Nesterov] } Of;) convergence rate
• Mirror prox [Némirovski ] to saddle point

POMD is more powerful nowadays
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-⑧ FEE ;¥y ✗TAY = FEE glx)
where gk1= YET ✗

'
-

Ay is concave

- Gradient ascent
' ADAM 1 ?)

- Pg = Ay
" Where y

*
solution to %¥xtAy

• ④ linear programming
7%6

, Fifa, ✗TAY note : sequence form polytope
=
m myin ☒Ay QER

"
such that

Fzy=fz , yzo Fj IAEA; ✗[j9]= ✗Ip;] , ✗ 20

F. ✗=f,
,

✗ 20 i.e.
Q= / ✗ : F×=f}Not quite a LP but min is LP ✗20

= Maxx maxv fjv
FIVE Atx
F, ✗=f,

,
✗20

= 7
,
fiv

Five ATX

F, ✗ = f,

✗ 20

- solvers
• simplex

guarantee error se. Interior point/Barrier } in time 040g E)• Ellipsoid

• payoff matrix sparsification

A = UM
- '

V'+ it size of sparsification
= nnzv tnnz M 1- nhz V tnhz Ñ

Atx-4A'T UM"VY×
= #✗+ VM-Tui
= ☒✗ +VM

-

Tw

= A- ✗+ VZ

AT ✗= A ✗ +Vz

Ñz=W
Utx = W

' So sparsified
IF fiv
Five D-Txtvz

M
-Tz = VTX

F, ✗
= f,

✗ 20



Lecture 10112 SOTA Practical Game Abstraction

- Automated game abstraction [Gilpin &Sandham F-C- 06
,
ACM 07]

• Used in all competitive Texas Holden today
original

abstraction,

reverse f.equilibrium finding
Nash Nash

' lossless game abstraction
< Information fitters

- Can make game smaller by filtering the information a player receives
- Signal tree

• Each edge corresponds to the revelation of some signal by nature to at least one player
- Abstraction algorithm operates on it

- Isomorphic relation
- Strategic symmetry between nodes
- Recursively, two leaves in signal tree are isomorphic if for each action history in the
game, the payoffs are the same .

- Recursively, two internal nodes in signal tree are isomorphic if they are siblings and their

children are isomorphic
. Need custom perfect matching algorithm for isomorphism children matching

• Game shrink
- Bottom up pass : DP to mark isomorphic pairs of nodes in signal tree
'

Top down pass : starting from top of signal tree, perform transformation (merge isomorphic pairs)
wherever possible

• -1hm . To do all transforms
,

• 044
,
n =# nodes in signal tree

- Usually highly sublinear in game size
• Solved At challenge problem Cshillittman 01] Rhode Island Holden

. 3.1 billion nodes in game tree
. No abstraction

,
LP has 91224226 rows and cols ⇒ unsolvable

- After abstraction, LP has 1237238 rows and cols ( 50428638 non zeros)
- Abstraction runs in 1 second
- CPLEX barrier took 8 days, 25GB of RAM back then [2006/2007]
• Exact Nash equilibrium

- Lossy game abstraction

" Texas holden poker
• 2-player limit 1018 nodes
• 2-player no - limit 10105 nodes
• Lossless abstraction still too big , need lossy abstraction

• Usually 2 orders of magnitude, 10
'"
→ 10

'"
still eh
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• Game shrink can abstract more by not requiring a perfect matching ⇒ lossy
- /Winsnode ,

- wins
node z / t / lossesnode , - lossesnode21 C k

' Greedy ⇒ lopsided abstractions

• Abstraction in each player 's card tree separately [Gilpin &Sand holm HAMAS-071
. Clustering -1 Integer programming

- For every betting round i, tell alg how many buckets ki it is allowed to generate
' First betting round ⇒ K

,
-means clustering to bucket nodes

• later rounds ⇒ run IP to determine how many children each parent should be allowed

to have so that total # of children doesn't exceed Ki
• Value determined with k-means clustering for all K'

"Ponti"'each parent before IP

- Potential aware abstraction
• All prior algs had probability of winning as similarity metric

- Assumes no more betting
• Doesn't capture potential
- potential is multidimensional

,
not positive or negative

- Bottom up pass for round I

• 4 norm on transition probability vector to Grade) next round 's buckets
- last round

,
no more potential ⇒ probability of winning assuming rollout as similarity metric

-

See slides for details

- Important ideas for practical lossy abstraction 2007-2013
- Integer programming
- potential - aware
• Imperfect recall

> SOTA : Potential Aware Imperfect Recall Abstraction with Earth- Mover distance in imperfect information games
• Expected hand strength -_ehs= equity is PlwinningHE Pltying

' against uniform random draw of private cards for opponent
-

assuming uniform random rollout of remaining public cards
• Used to cluster hands
• But doesn't account for hand strength

' Earth mover distance, distance metric for histograms
• min cost turning one pile into another
• cost= amount of dirt moved ✗ distance moved
• linear time in ID but challenging to compute in higher dimensions

• Potential -aware abstraction considers all future rounds
,
not just final round
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• See slides

Lecture 10121 Librates - SOTA 2-player no- limit Texas hold
'

em

• AlphaGo extends to perfect information games only
- In perfect info games, subgames can be solved with info in subgame only

- Not true in imperfect info games!

• Heads up ( 2 player) No limit Texas Hold /em
. 10161 situations
• Main benchmark /challenge problem for imperfect info game
• No Al beat humans prior to Libra-1ns

' Libra -1ns Rematch after prior Al lost)
i 120k hands over 20 days , 4 players
' Jan 2017
• $200k/pros based on performance - not NSF, private raise .

$20k base
,
bot nothing, top 3 by perf

• Weren't confident that librates would win
. Poker players are intense, ready to wake up/ stop showering to play
' Conservative experiment design

- Slides for details
- On avg human 21s per hand, Al 13s per hand

' Al vs ML

• No data needed
- Doesn't assume opponent will behave the same way
- Not exploitable

• Libra-1ns
- Pgh Bridges supercomputer

Rules
'Abstraction subgame self improverEqiiilibrium solver""d"§mepnm)strategy

- Abstraction
• Same algorithm as Tarkanian8
- But much finer abstraction
• Abstracted player bet sizes, including radical bet sizes which were used
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' Equilibrium finding
- Improved MCCFR

- System setup, see slides

- Subgame solver
• NIPS 17 best paper
' 2015 unsafe subgame solving

• No theoretical guarantees
• Does well in practice for some domains
• Assume other player plays according to blueprint strategy

- 2014 Resolve refinement
' PI picks between entering subgame or taking EV blueprint of subgame

• 2016 Max margin refinement
• Margin

,,

= F-VCtHµ] - F-V1Enter,]
• Maximize minimum margin

-2017 Reach Max margin refinement
• Mistake by opponent is a gift
• Split gifts among subgame by probability subgame reached
- Can substitute lower bound estimates on the gift

- Nested subgame solving
- Solve subtree in realtime for off tree action taken

Lecture 10126

• Self- improver
• Intuition : use opponents actions as hints for where we are weak

> See slides for more on Libratus

- Depth - limited subgame solving and Pluribus
,
SOTA for multiplayer no limit Texas holden

•

"

solve a middle game
"

- Depth - limited search for imperfect information game

Lecture 11102

DeepMind SCZ
- Great talk

• What is an action 's representation?
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' certificates in extensive form games
- Deep RL [Alpha . . . ]

' Good practical perf
- No exploitability bounds

' Bandit regret minimization [ Farina 20]

- Certificates
' Compute Nash by incrementally expanding game tree

• Pseudogame
- Game w/o known utils on all terminal nodes

- Small certificates
• Small = 01N ')

,
cel
,
N=# nodes in entire game

• See slides. . .

- Matching pennies , C terminal nodes
' BC

t cat :O rounds lost under optimistic best response
+

'"

+1, -1 f-4 :{ rounds lost
- Inductive case
let P

, play H = :X

G- G-14-14+4

✗ + ✗ log,,G +4×110%12 ← " " H
4-x) -14×110%6 + ✗ log,, Ca ← Up, -1

want ¥a=×
,
c¥s=×

,
p=¥¥¥,

1091ftmin§PP ,
so Pz always wins that much

- Oracle mode

Lecture 11109

• Slides
' Exp4

i.Next page
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• Recall MWYK experts
• Initialize tjeck], P,?=É and Rj°=O missing fancy guarantees
• for t from 1 to A : I
select expert j according to pi

"

Exp}
receive reward ri for each expert j g Receive reward rj for expert j only
tj , Rj ← Rj

"
+ rj 9 Rjt← Rjt

- '

+¥
Pj ←

enRi
Ei e3Ri \

Exp 4

Experts are strategies, ej is the action recommended by expert
K experts, n actions j at time t

Initialize ltj ECK], B?=¥, Rj = 0
For -1=1 to A :

select an action i according to §j:e;=i Pj") :=P?"
receive reward rit for action i

update Rj← { Rj
-'
+ if j recommended i

Rj
"

Pj ←
EZRI

otherwise

Ei EYRE

Lecture 11111

- Equilibrium refinements
• Traditionally from economics
• Less/no opponent modeling

• Intuitively, Nash equi optimizes for strong opponent
- Doesn't focus on parts of game tree where opponent wouldn't go

' Guess the ace

Dealer
☒

¥2 oA¥pn^¥p É
•⑦p, betP1

p, bet piiuit \(0/0) (0/0)

O@P2XPrApnPg.pNAPnot AP

(0/0) f-1000,1000) (-1000/1000) (0,0)
T

"

sequentially rational
" ☒ "

sequentially irrational
"

• Nash eq not equally good when players make mistakes
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• Guess the ace with gifts

ADT Y5¥!APt¥z not just removing••@
Nb ¥10b dominated actions !

(o, @_-

✗ftp.IAP-ioooioogf,É•£
GF#if qq.gg/1gift
(0/0) (-1000/1000) (0/0) (-1000/1000)

- Trembling - hand refinement
- Introduce E >0

• For any E>0, imagine computing a Nash eq. in the game } Conceptual frameworks . -1. the fact that every action is selected with lower
bound probability f- (E)

• Return a limit point of those Nash eq . as E.→Ot

• Extensive form perfect equilibrium lsetten 75]_ Nobel prize
- f- (E) = E
• ✗Ija] >E ✗Ip;] if pj -1-0
- ✗Ija] ZE if pj=¢ } → MILE) ✗ ZM, (E)

. may myinxtuy
Fzy=fz (seq form constraints)

Miley >_ mile) trembling constraints)

F
,
✗ = F,

M
,
✗ 2M

,

• Quasi-perfect equilibrium [van Damme 84]
- The lower bound probability constraints trembling constraints are in sequence form

• The probability of every sequence oze
"

.

✗[jq] 2 [ depth
# ⇒ ✗Ija] ? lie)

. may myinxtuy
Fzy=fz (seq form constraints)

y 2h14 trembling constraints)

F
,
✗ = f,

✗Zl
, (E)



Lecture 11111 cont.

• Relationships
Nash

Normal
Perfection

Trembling
QPE

EFPE

' computational complexity

solution concept General sum Zero sum

Nash eq PPAD- complete FP

[Daskalakis 2009] [Romanovski 62]

(Chan & Rong] [von Stonge / 96T

QPE PPAD- complete FP

[Milterson& Sorensen 2006] C" ]

EFPE PPAD -complete FP

[Farina&Gotti 2017] CD

• Trembling LPs Pa
Maxx CCE)T×

St A④×=b }
BBC

"

only" depend
polynomially in E

✗ZO

' Goal : compute a limit point of optimal solutions to PCE) as E→ot

- Stable basis
• The LP basis B is stable if there exists É >0
such that B is optimal for P to< Ee E

'

Negligible positive perturbation NPP
• E* >0 st forEcet any optimal basis for the numerical LP PIET is stable

• -1hm . A NPP E
"
exists and it can be computed in polytime in the input size

- Above is not practical , practical :
• Initial E

, solve PCE)

f "Elable t B
reduce E ← check stability

evaluate
limit
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-3 different notions of "equilibria
"

' Free communication →Nash equilibrium for the
"

meta player
"

- No communication ever → team maximin equilibrium TME
,
favored in RL

• No communication during game but players can discuss common tactics before playing
↳ TMECOR TME with correlation device
↳ convex unlike TME

- Today : only discussing 0 sum

requires common
signal and tactics able to freely- Communication

gf communicate
f.

convex? ✗ ✓ ✓

Bilinear saddlepoint?

""E ""F-"r Nash

may mpin ✗Tmp
✗ ✓ ✓

Is set of strategies
a low dimensional (poly /A1) N/A ✓ ✓
polytope?

Min Max -1hm? ✗ ✓ ✓

Complexity ? hard , ? ? hard poly
Team utility low higher highest

' ④
Pl
, Plz team

,
Pbp④% . . I ; +
2-

Hit 1-ME team : 7,9×711×1-1%+451×-1%4}

)→ solves to ¥⑤ . - -
- -④ . .

. . .P! . - -④ St xp, -1×-1=1
"It "It Hit Hit YH -19-1--1
-11 O O O o o o -11 ZH -1-2--1=1

✗14/7 20

. = Max min /XHYH, XTYT}
✗ it

But TME opponent
Wlog XHYHEXTY-1 m¥ 7,95 (XHYHZH , XTYTZ;)
⇐7×+14+1<-11-14+111 -X-D 2 m¥ (2-+1,2--1)=1-2
⇐7×+1-14+1<-1

so value maximin =/ value minimax

m¥, XHYH

St Xp, -1×-1=1

yµ+y,= , }
irrelevant}m×a× 4+4-4,1

since last constraint tight✗/YZO

✗HTYHEI 01×+1<-1--7×+1--4
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• Recall Mi = deterministic strategies
• A TME Cor is a distribution HE0th ✗Mz)

Max Min
-

HeoHind 2- c- Qs 2 It Hiltz) (I UW.IT, [Glut] -Th[02ND - 2-[9-19] . clock)))
(Ti / Th) w C-W
in a F
n
, n terminal

states linear in H !

linear in z !
= 7¥ mzinw-Z.wf.E.az, HM, -114.17194551124@D) Uw -2-[9-14] - c@eeD But the polytope, exponentially big simplex-

:= JCZ] Change of var

let F. OH, ✗7)→ RM

H → ¥4m, HMMM XD-114@D)wfw
Then above

=
Max min I yfw] . uw - 2- Coz@D - C@dwD
8ER Z WEW
8ERA

where R= Image (f)

some day I'll have the time to improve these notes. . .


