C

VU

5-/45 52

NOTES

wanshenl

Prof Todd Mowry
Book: Compilers /E

Aho, Lam, Sethi, Vllman

CMVU |5-745 Nofes, Prof: Todd Mowry, Book Dragon book 2E
Chapter 9. Princpal Sources of Opfimizations

| elminatan of unressary instructions in object wode
' Code impravemen‘f = lreplacng instruction sequence s with ﬁdw%uivalmT S,

* Local = WI"’hm b“ﬂC block nofe: 3l9ba| is (nu‘_rleadfnq,
+ Global = across basic blocks, mastly baed on dafa=Flow analgsis (later) Ry el Rpark
interprocedaral anaksis

- Three—address ~ statements
- At most three operands A=B op C
- Easier to frandate fo assembly
- Easier 1o c[efecT common subexpressions UGTEF)
= (té = lP*L [- inti
eg. x=al = 22 o or ¢ a bbyte nfeger

highlights the fact that a hiyh—leve | lqnyqqye
W; I ' '”E’SH H— [n LmCNOIdd b'e rEdtM danc ’n .ra) Before. | o
C0m PMTI'Vy LF*L ﬁr 6\[99 qrrqy offse"' Figure 9.4: Local common-subexpression elimination

Common subexpressions

An occurrence of an expression E is a commen subexpression if -

@ E was previously computed

@ vabes of yanables in E have ot changed since previows compufaion

- However, while sfuff ke 4% can be elimmated, array acceses like altd may nct be i it goes

‘I'hrough a basic block which assigns To @

Copy Fropaquibﬂ
HssignmenTs of the form u=v are called cop stafements.
: Underlyirg idea: use v for « wherever possible " after u=v

® \‘:/b Nofe that c=dte cannof be
© repaced by c=a or c=b
since confro| may reach ©
Figure 9.6: Copies introduced during common subexpression elimination a‘F‘,’er @ or ®'

' Dead-Code Elimindtion
- Variable Vv is |ive af a paint 0 a program if ifs valug can be used subseq/uen‘ly
and is dead gt that poinf otherwise.
+ Constant fulding is deducng af compile fime that a vaciable is a contwif and usiry That insfead.

eg. if (DEBU) z=r if (Talse) > nothing

folding elimination

- (Code Mtion
Programs spend a bulk of Their time in Joops
=7 might improve. running fime by decreaiing code in loop, increasing code outside loop
t =limit-2

e.9- while (i<=limf-2) — while (i<=1)

C hap‘[’er q.| Confinued

* Induction yariables
Variable x is an jnduction variable if Jpositive or nequfve constant c

such that each time x is assigned, ify value increases by c.
SJrrengJ‘lj;_‘reduc’non iifwgeplqcrry an expensive operdition by” a cheaper ane
€ th=trxi e

Lecture 2/2

“Basic block = sequence of 3-address sfatoments
- Only the first” statement can be reached from gutside the block, no branches info the middle

- AII” stafemerts are execufed consecutively if the first ane is, no branches or halfs lext majbe df end
- Maximal — cannat be made lar,ef‘ withouf uio‘dh'n9 conditions

"Flow graphs
- Nodes + basic blocks
- Edgest B:»B; iff B can follaw B immediafely in some execution

- Block led by first statemeaf of program is starf (or enfry) node.

. Code hoistin
Eliminate cSpies of identical code on qua"el Paﬂ'u’ in a flw 3mph To reduce code size

- Elimination of Joop index
- Replace fermination bj Tests on other induction variables

Chap‘fer B4 Basic Blocks and Flow Graphs

- Basic blocks
W control will come back as if corfrol never deviated
% handled

- SubtleTy: interrupts can be ignored. .
hc an irrfermp’r occuls and j§ Tt program crashes with an error anyway

- Par’rifioninj three-address stafements info basic blocks

INPUT | A sequence of Three-address stafements
A list of the basic blocks for fhat sBquence in which
each instruction is dssigned to exactly one basic block.
® Identify leaders, the first insiructions in some basic block.
-The first three-address instruction in the irfermediate code is o leader.
- Png instruction that is the Tqrge’f of @ conditional or uncondional jmp s a leader.
Any insfruction that immediately follows a conditional or unconditional jump is o leader

For each |eader, ifs basi ‘ : N H
O g i R st e T R i “progractins vp o b it

oUTPUT

METHOD

Chapter 3% cont
‘ Nex‘f— Use |nformaTion

1_ M .
I,F iftﬂj :;S'zn%ngﬂ ora nd} TMCV) sfatement j uses The value of x compufed at stafement i}
)

x is live af stafemert i

. Mo as:

eorit] ¢ —3

*To defermine |iveness and next-use Informdtion.

INPUT | Basic block B, assuming symbol fable inifialy shows

all non-temporary variables in B as be?nj live on ex

outeur | At each (x=ytz in B,attach to i the liveness
and next-use informdiion of XY and 2.

METHOD | O Start at the last sfatemert in B.
@ Scan backwards fo The beginnirg of B
OAf eadh isx=ytz in B
@ fttach next ure and liveness of x,y,z from symbd fable o ©
@ ln symho| fable, set x to rof live and no next use
B ln symbol fable, set y and z To live and next uses of y and 2 fo &

Order matfers! Consider X=X+X.

- Flow 9rqphs a’reqéy covered
Tust” note Hhat [sial represedotions are betfer as we may frequenly

change the number and fype of insfructions i a basic” blecK

'Loo S
A ‘set of DOCIES L in a flow 90:,)1') s a |ooP if L corfains |oop en@ node € where:

« e is not ENTRY the entry poivf" To the flow 7(?19\1.
- No node in L besides e has a Pmdchmr autside L.

- Bvery nide in L has a nonempﬁ' Pqﬁn complerj within L o e.

Chapfer 85 Opfimization of fasic Blocks
directed acydic graphs
'Consfrud’(g DAGs Tor basic blocks
O A nede for each initial value of variables in basic block
@ A node N for each statement s (prior 15 5)
N's children are nodes thaf correspond o stalementy that last defined operands used by s.

® N is labeled by the operafor at s.
@ The \ist of varidbles for which if is the last definition in The block s atfached o N.

-With the DHG/ we can:
- elimindte local common subexrmfrions
. eliminafe dead code
- reorder independent stutements
} qpply algebraic laws for simplificafion

Chagfer 8.5 codt.

- Local common subexpressions value—number method
‘Before adding new node M) check if existt node N with same children, in same order, with same operufor.

-Dead code elimination
Repeat: delefe any roof with no live variables

-Algebraic idenfifies
- Some examples
X+0=0tx=X :
X/=x algebruic
X=X *X]loms reduction in strength,
2X= XX replacing @xpensive op with cheaper

- Represenfution of anrdy references

x=ald o
aljl=y what if j=¢! _
2=atq) alE) camdt be naively opfimized

Instead y

@ = (—_— eD X a0 io o b

X) q[LJ Figure 8.14: The DAG for a sequence of array assignments

@ ©

@ alj)=
AR S= KILL all curreritly conrtructed nodes

@ () D/ whoe volue depends on G,
A klled node cannof receive any more labels.

- Pointer assignments and procedure calls
- Assigning ind(recﬂj leou)h Q ﬁomfer
X=%p usy every variapfe } killc all the other
kq=y asigns Sveny variable J nodes constructed s far in the DAG
- Similarly " procedures called in the scope of x both uses and kills x’s node

- Reassembling basic blocks from DAGs
- Prefer 10 compufe results into variabler Thaf are live an exit from the block

But if no gldbdl liveness information, may need copy statement
& We , d=btc a=btc

da=btc
b=a-d b“/’) d=a-d d=a-d

c =bfc cedie b=d
d=a-d W c=dtc

* Rules for DAG reconstruction .
0 Rerpect DAG node order @\‘/)crm}:ilgmwe ur?ugfhﬁ,l{m $\q§%m
Assignments fo arroy must follw previsus assignments @ (fgiec B3
Fual rycedure call 0r indirect assignments
80%““{0” Y racks ?S?g&‘éxu’&‘%‘?ﬂ”mm © frymvrfp follow all presos @alaatons

MRV(IWS A SSIgNMm
array be ?‘earder/ed f beth dont qurs arsiganﬂ'S

Lecture 2/3

- ® functions in SSA and LLVM (For Assignmen‘l' 1)
* Motivation : where is @ variable defined or used’
'Traversinj difech between relafed uses and definitions would enable sparse code am&ﬁS
- Appearances of the same yariable name may be unrelated

-Sing\e Static Assignment (SSA)
- Every variable (s assigned a vale af most once
. But " what about join nodes 7

(F—~
LG~ T~y
C, 2yl

q,=x Q,=btt b, =aEx

b =K Cy 2yt -\ Q

Gl ot ? L) 5= (%)
= G T

C3 :EKC[,C,)
bl:§ (bt/b)

QQ = C3+q3

“Treat & like ary oflRe arifhmetic function For now

Lecfure 2/%
" LLVM compiler sysfem

- Infrastrucdure - reusoble comfonenT; for bucldiry (0mpi|€l‘$‘
- Framework: E2E com|>ilers built with above

: Th(“CQ Phﬂje des |9" doesa't change codle changes code
- Opfimizer is series of analysis and opfimizstion peses
-LLVM IR

In —memory dafa structure

\lvm-dis ,\
Bitode (be) —=———== Text farmat (/I files)

The bitcode and Text formafs are lossless!

- Program Strucfure
- Module F2F2F--
- Function BB BR2 88 -
- Basic block 12121

- LLVM Pass Manager
. COmfiler i orym'rzed ar & series of passes

© Four fypes of passes

Chapter 92 |ntroduction o Dafa-Flow Analysis

* Data-flow andlysis
A body of Tegfniqua that decive information about the How of dafa along program execution paths.

- Execution Path

The path from point g To point p, is fhe sequence of poins p,p,, - pa where for each =hz-jn-t:
" P precedes @ stafement and pun l'mmdl'qfelj follows the same statement
.p: ends some block and p,, beyin,y a successor block

- Imperfect representutions
- Not possible To frack all program sfates
. Definitions which may reach o program poirtt allong some Pa’rh are feaching definitions.

- Data-Flow qnalysis schema
- Every program poinf has a dofa-Flow value associafed which represenfs fall passible program stesf
- Domain : sef of possible data—flow values
INLs] * Jafa—Flow values before statement s
-OUTLsI: dafa-Flow values after stafement s

‘Dafa-flow problem
-Find a sdution fo the sef of consfraints on INIS) and OQUTL] for all shfemenfs s
- Two sefs of constraints
‘Based on semantics (Transfer functions)
-Based on coritro] Flow (Conttrol-flow consirainfs)

- Tronsfer Funclions be
-eq, if asy —— then 2V
- Information can Propng’re forward or backward q[ory the execufion paﬁ)
- Forward-flow problem
-OUTT = £(INL) f; = transter functin of sfatement s
- Backward - flow problem
- INL$2= £ (0uTr)

- Conftrol-flow Consfrainfs

. Within basic block B confaining [s,5,-,%),
- IN [5:1=00T (5] for all =Ly oyl

 Between basic blocks, resffe schema in ferms of dafa-fiow values enfering/leavig block
- IN[8] = IN[s]
- OUT[B)=0VTfss)
. fB =f;,0f; ;ﬁ'&woﬁlo f
- 0UT [B)=f3(IN[B))

- Dataflow equations usually don't have o unique solution
Instead, find the mosf “precise” safisfying ~confrol-flow and fransfer canstraink

Chapter 9.2 cont.

- Reachi r? Defintions

- Definfion d reaches point p if there is a Paﬂ) from The Poin'f’ /mmediqTe\j
followiv_\g d to J) such Huat ¢ is not killed alon) The path.
ani

+ A deffition of Jariable x is killed i there is any ather definitan of X afong The path.
. Application: possible use before define

- Add a dumry definifion for each variable on Flow graph entr

* If dummy might be wrd, then there might be use “before define (only ’“‘?W‘)
- Note thaf all possible inaccuracies are safe /conservafive
'Transfel" fu(rc’ﬂbn
example. gefinition d:u=v+w il h
fy= gen; Ulx-Kill) fransfer fundion of definitin d Dince o ke on b befe

9en,50 a variable cun be both

geny =1d} the sef of definifions Generafed bj the stafement S',?:,q;f“ Jed with gen faking
kily the set of all other defintions of u in the program

This also applies 1o basic blocks.
downwards exposed: gen set definitions fhaf are visibk immedidfely affer the block,

a definition is downwards exposd in a basic blck only if it & nof killed by a subsequert defintion
to the same variabke inside The basic block

‘Contro|- Flow equaﬁbns
- Note OUTIPFICSINIB] whenever P~—B

- Union is the meef operafor for f‘eachmj defintions
INIB)= Up g precessor OVTIF]
of B

Reaching definitions problem
- 0UT [entry]= ¢
- ¥ B#entry,
OUT [B]= geng U (INT 8]~ Killp)
IN[B] = Up predecorrof B OVT[PJ

- [ferative algorithm
INPUT | Flow graph where killg and geny compufed for each B

IN[EXIT] = ();
OUTPUT IN[BJ qnd Ourw] forEZ(eIz;Fch basic block B other than EXIT) IN[B] = 0;
= while (changes to any IN occur)

METHOD @ VB/ OUT[B) ¢ emP;r,'m[l:’ <S f;rzi(czgilel l?azsiic bloc(l):CB other than EXIT) {

@ Wh'le {OUT Chqnﬁs): I.fem'h'a(\j mﬁ\ql. OUT[B] = Ub a successor of B W[S];

IN[B] = useg U (OUT[B] — defg);
Y8 #entry, }
INIB) = Up e 9 VTIF)

OUT[R) = sm 5 U ('N[B)- k(“ 9) Figure 9.16: Iterative algorithm to compute live variables

Live \ariable Anlysis

- Could the valug of wvarible x of pairf p be ued in some path p~s.7
If yes, x is lie af p.
If no, x is dead af p.

'ﬁpp}icq‘honi r‘67ir’rer allocation. Don’t stre dead vaues, prefer overweifi dead values,

NO‘fE That This is a backward probkm, so injtidize IN[exit] instead of OUT[enl'g]/
infercharge N and QUT i iterative algarithm.

Chapter 9.2 Corit

* Available Expressions
*An expression x@Y s available aof a poinf p if
- every path enfry~yp evaluates xey
-after the last xey evaluafion prior fo p, there are no subsequedt assignments o x or y
* A block Kills expression X0y if it mag dssign x of y qng does n recompufe x®y
‘A block 9eneraTe: expression x@y If it deﬁhife\ly evaluates X®y and does not subseq/uev\‘ﬂj
define X or y.

Reaching Definitions | Live Variables Available Expressions
Domain Sets of definitions Sets of variables Sets of expressions
Direction | Forwards Backwards Forwards
Transfer genp U (z — killg) usep U (z — defg) e_geng U (z — e_killp)
function
Boundary | OUT[ENTRY] =0 IN[EXIT] =0 OUT[ENTRY] = 0}
Meet (A) | U U N
Equations | OUT[B] = fg(IN[B]) | IN[B] = f(OUT[B]) | OUT[B] = fs(IN[B])

IN[B] = OUT[B] = IN[B] =

Appreacs) OUT[P] As suce(sy INLS] Ap preacs) OUT[P]

Initialize | OUT[B] =10 IN[B] =0 OUT[B]=U

Figure 9.21: Summary of three data-flow problems

Lecfure 2/9

. LO(ql!y €xposed Use in q basic blck is the use of a dafa ifem which is nof preceded in the basic block by
a debinition of the dkifa item
-Locq\\] avaiable definifion = |ast defintion of dafa ifem in basic block

Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit]

// Initialize
out[Entry] = & // can set out[Entry] to special def
// if reaching then undefined use
For all nodes i
out[i] = & // can optimize by out[i]=gen[i]
ChangedNodes = N

// iterate
While ChangedNodes # @ {
Remove i from ChangedNodes

in[i] = U (out[p]), for all predecessors p of i
oldout = out[i]
out[i] = £,(in[i]) // out[i]=gen[i]U(in[i]-kill[i])

if (oldout # out[i]) {
for all successors s of i
add s to ChangedNodes
}
}

ChapTer 9.3 Foundations of Data-Flow Ana\yn’:

- Data-Tlow analyn‘s framework

D, V., ALF)

D direction of dota-Flow, forward/ backwardf
V: domain of values

A:meef operafor

F. {-amil] of transfer fundions V-V

- Semilattice
V,A)

where ¥xy,z€EV

- idempgtent xAx=Xx

- commutatiye X AY =YAX

* associative x/\[yf\%)=(my)/\a

+ has top elemeit T where ¥x€V TAx=x

. opfionq”] has bafom element L where ¥ xeV LAx=L

- Parfial order
< isa Par‘h‘a[grder on V if Vx,y,zGV,
- reflexve XEX
arfisymmelric x<y and yex = x=y
* Trunsitive X2y and 75_2 7 xez

: qufia"] ordered set (POSQT)
V,¢) is a posef
< my be defined, where xéy iFF X<y and x#Y

' Parffﬁ“y ordered semilattice
Given (VA), ¥ryeV xzy iff xay=x
A idempotent comiutative associative < < reflecve anTr‘rymme%n‘c Transthive

+ Greatest (ower bound (g1b)
- Given (VN), 9|b of ¥y eV s g sah‘rfyihj
© gEx
N o
' 2 an] elcmenf Sa'i(sfyc:? Z72<X omcl z—,éj 'Hflel’l zgj
©XAY (s “the anly jlb K qn&j
Least upper baund (lub) a/\q‘oguqs, formmj yin semilatfices infead of meef semildttices
~f lattice has both meet A “and join ¥

Chapter 93 cont.

- Prodact ‘GHKES
-Given (AM) and (B Ag) (remi)|atftices, their product |attice s

\AxB, Ap)
where (a/b) Np (a :b') = (q Aga’, bAgh)
and (q,/'o) s () iff Q/S,q a’ and b<gb’ 31:0”0"“5 from abave

- Height of semilattice
'He|p$ us Mﬂd?rffqncl rufe of dofa-ﬂow ar\al«/sis @avergence
‘An ascending chain in poset (V,9) is a sequence’ X <% &KX,

- The height 0T a semilattice is the la nunver of < relations dino dhai
7Todd prefers > ‘Jnd dQS(End(,B chain “7“* umber of lation n Qy ascen my in

- Transter Funcfrons
*Family F: V-V safisfies
-Ventity T where Wxev I(x)=X
* (Closed “under compostion, for any f,gGF h(x)= 3(F(x)) €EF

 Framework Properties (D, F,v,1)
“Monotone if Yxy€V and FEF, x<y 2 < Fy (etlwiwlenﬂj fxry) < o9 1iy)
Distributive if xy€V and FEF, Flxay)= FYAT()

Provable Properties:

* (onverges 7 solafion o ddla-flw equations

- Mongfone =7 solution (s maxioum Fixedpoint MFP
+ Mongfong and finite heiyh{' = ﬂamn‘['eed To Converge

Figure 9.23: Forward and backward versions of the iterative algorithm

- |deal vs MOP vs MFP lufion , Assuming forward

Consider any path P=enfry 258,68,
with fransfer function fo the” composition of 5 T, -, (nofe fg, excluded, path is To beyimiig of B)

- A
IDEAL[B] = P sl el o 5 (Vrtry)

Sine considering all posible exce culion Paﬂs is vndeciddHe/
assume every path’ can be faken (meef over paths)

= N
MOP[BJ P:gﬂq_fm‘h_&mg FP ("e"’@)) nofe MopP < IDEAL

Buf the flow grdph may have cydles, so
MEP : - asi< blacks yisited may not be in order of execution

initialized with safe drtefical T “no info” value so MFP <€ Mop

/

Lecture 2/(0

' Speed of (onvergence depem[g an vigif order

Reverse Postorder

* Step 1: depth-first post order BO R
main() {
count = 1;

B2 Bl
Visit (root) ;

}
Visit(n) {
for each successor s that B3
has not been visited
Visit(s);
PostOrder(n) = count;
count = count+l;

}

ifx==0

B5 B4

B6

(K

* Step 2: reverse order
For each node i
rPostOrder (i) = NumNodes - PostOrder (i)

(order among siblings
unimportant)

Carnegie Metion [l
A good nestin in real Pfozf‘an\s is x1.75.
Pumber o chk edges in Hhé path

Lecture 2/I1

" LLym String Ref
- oufs(), errs(null()
‘21T

C hapTEr QY Constadf Propaﬂd\'ion

- Properties Not distributive
“Unbounded set of possible dafaflows values e T feonfy=constadt
+Not disfribufive v £ FxAY)=NAC
* Mondlone = 0
‘Lattice for a single variable corfains UNDEF:
- Al type -appropriate constanifs {{/ (Ia\\--'
- NAC net a consfant /
- UNDEF undefined NM

- dafe fo opfimize when XAUNDEE ““this random value no worse’

' MOSﬂ] cammon sense

Lecfure 2/16

Review: A Check List for Data Flow Problems

s [o |
+ Semi-lattice BO,B1,...,B6 is [7)

rPostOrder
— set of values V
b ” n -
- TopT

— finite descending chain?

+ Transfer functions
— function of a basic block f: V—V
— closed under composition
— meet-over-paths MOP
— monotone
— distributive?

* Algorithm

— initialization step (entry/exit, other nodes) . .
Number of iterations = number of

back edges in any acyclic path + 2

Carnegie Metlon’ [

— visit order: rPostOrder
— depth of the graph

Chapfer 6.24 Static Single—ASSignmefil' Form

'Sing|e—5Ta1’s’c Assignment (SSP)
" IR which facilifafes cerfain code optimizations
- Two main differences from three-address code

“All SSA assignmeats are to variables with disfindt pames
P function 1o combine confrol-flow paths

if (flag) x=-1, else x=I; if (flag) x=-1; else xzl;
y=x*a > | %= lx,%)
where Pxi%) has valve
X if £
% dtherwise
Lecfure 2/17

'Recurrinj ‘['heme:knowin) where a variable is defined/used is very useful

-Loop invariaqt code” mafion

‘COP, propagation

-_l_rwersm) direcly befween related uses and defs endbles sparse code ana\ysis
- Appearances of same variable name con be uncelafed
- Two ramb« used Solutions

- Use- Definition chains = def of x —2all uses of »

- Definition-Use chains © use oF x 2 all reac)u‘@ def of x

‘N defs M uses 2 O(MN) space and fime

- ¢ merges mulfiple definifions alwy maltipk Con) paths info q single definifion “Implementing” &

- Syntax trick, nat an acfal insfruction a=xfy] [w=mn
- M a basic block with p predecessors, Xpew b (%, %, 7 %p) ot LN

53R o)

O Each assignmedf gemerdfes a fresh variabke
@ At each join point insert € functions Tor gll live vaﬁ‘Qbkj with muﬁq.ie Oufsfﬂndiry defs.

frivial SSA this addition = minimal S5P

Lecture 2/(7 cont:

~Goal: doing SSA without daing readu'rg def /liveness
- Insert P for var A in block 2 iff
A was defined more Than once befure
+Jnon-emply path x~vz B and non-enply 2 Pyz where
R xz(1 Pyz"";‘
-ZﬁPx% or 2¢P,,~ where Pn=Px{"7-‘ and P,f P’,-'z
Eatry block inplitly defines all vars
“Note A=P(-) is a def o A

- Daminance
- Block x Sfﬁ'dy dominates black w (x sdom w) iff impossible o reach w witht passing ‘Hll‘ough x first
*X dominates 'w (x dom w) iff x sdom w OR x=w

- Dominance Tree (D-Tree)
X Sdom w iff x is a proper ancestir of w

-In SSA, defintions dominafe uses.
X used in xe d (K%, %) 7 BB(X) dominafes predecessor of BB(P)
X used in ye-x 7 BBE) dominales BB(y)

- Dominance Frovtier
 Dominance frontier of node x = Jw : X dom pred) and It sdom w)}
-The fruntier nodes are the ones that need a ¢
“Poinfs where paths converge”

Using Dominance Frontier to Place &() Using Dominance Frontier to Place &()

+ This essentially computes the | ‘ on the fly, inserting the
minimal number of ®() neccesary
top of y

Computing the Dominance Frontier

The Dominance Frontier of a node x
compute-DF(n) {w | x dom pred(w) AND !(x sdom w)}
=0

in the D-tree foreach child of n, c, in D-tree
uuuuuuuu DF(c)
foreach w in DF[c]
if In dom w
S=sU{w}

Lecture 2/13
Constant Propagafion

If vee, repace all uses of v with ¢
If ve 9(gq0), replace all uses of v with c
'Copy propagaion
‘Delete "x<®lyy,9 and replace all x with y
‘Delete xey and replace all x with y
- Congfant folding, constant conditions efc.

- Conditional constanf propagatian
-Blocks: assume nof execated uafl proven atherwis
Variables: dssume nef executed

T not executed
UYL varidble hos been assined @ constanf

variable cn hold differenf values
at different times

X

- Confrol - dependence

Y is confrol-dependent on X if e\ O can delermin
- X branches 16 u and v =~ 8 whether Y s execufed
‘T path u~exit which doesn't go through Y K’)
Vpaths vvexit go Through Y |

®

+ Coritro| Dependence Graph
O Consfruct CFG
@ Add enfry and exit node
® A (entry, exit) edge
© Create G' the reverse CFé
© Compute D-free in G' (post-daminators of G)
® (ompute DF9) ¥y€G™ (post-DF of 6)
OMd ky€G o (DG if xe PR

-Dead Code EliminaTijon

Aggressive Dead Code Elimination (Fixed Version)

Dead Code Elimination Assume a statement is dead until proven otherwise.

init:
W€ Tiat of a1l defs mark_ aIs/(ZJuve all stmts that have side-effects:
while !W.isEmpty { - stores into memory
- turns
stmt S € W.removeOne s . ;
- calls a function that MIGHT have side-effects
if |S.users| !'= 0 then con tinue As we mark S live, insert:
if S.hasSideEffects() then continue - S.operands.definers into W
- S5.CD? into W
foreach def in S.operands.definers { \
det usere € def users = (8} while (|W| > 0) { Conditional tests for blocks upon

which S are control-dependent are
if |def.users| == 0 then also inserted into work-list.

W € W UNION {def} if (S is live) continue;
. mark S live, insert:
' can leave zombies ive, imsere:
delete S i » - S.operands.definers into W
} ﬂlNe buf use'CSS - s.cD' into W
S Carnegie Mellon

S <- W.removeOne ()

CthTer Q.6 Loops in Flow Graphs

- Dominators

Figure 9.40: A data-flow algorithm for computing dominator

*Depth- First OrAerinj = reverse posforder
'ConsTNChr_\y a depth—first spanning Tree
+ Rdvancing edges m—> proper descendant of m
' Refren’ﬁvy edyes M-y Ancestor of m (PoSsiHy ifself)
~Cros edges neither quanciry nor refreati
“|f DFST drawn st chidren drawn L7R in the order in which ‘l')l(y were odded o the ree,
Then all cross edges R
‘Back edges¢ €d9€ t-h where h dom t
“In a Flow graph, every back edge refreating, buf nef every refrea’ﬁv? is back
- Flow graph reducble” if al rdmrh'ry edges in DFST are also back edycs
“Most fasteful programs are reducible
“Depth of DFST= largest number of refrealing edges on any cycle-free path
'lnfumuey upper bound on loop nesfing

-Naturd Loops
'Proper’ﬁes
'5in9|e—en’rrj node (header)
* 3 back edge enfering The loop header
- Natural loop of a back ede n-d =1d| U{v:V canreach n without 90@ ﬂm)\qh d}

'Cor\veryeme of iferafive JataFlow qlgoriﬂqms
~ Generally onetdepth o carry variable use back ward along ang acydic path

Lecfure 2/24

* Motivation: uniform treatment for all loops
“Not every (\Jde sa Ioop from oPﬁmizq‘h‘on Perxpecﬁve
‘Loop
* Single edtry poidt (header) © dominates all podes in the loop
Edgﬂ must form of least a cycle
'LOOPS can nest
‘Back edge : arc t=h where h dominates t
- Nafueal loof of back cdyc t+h is the smalkst sef of nofes that

“Includes € and h
- No Pl’edecessors oufside of the set except for predecess of header h

Lecfure 2/24% cont:

laner Loops
'loops L, Ly different header? — disjoint o one is inner loop

~Loops Li L, same header? — combine and freat as ane loop
* Preheader : op‘hmizm‘ﬁbn code 1o be execufed before every |oop

-LItM Loop |nvariant Code Matijon

'Loop—in\lm‘anf compu’ﬁzm'onf compu“m‘n‘or\ whose value doesnt chqnyc as lon? as conitro] sfags within loop
-(ode mation: move stafement within |oop To Prehmc\ef‘ of IUOp

'Fl'/idmj loop-invariant compul'q‘l'mn
~Reach|'n] deFinitions

QINVARIANT if all defs of B C thaT reach A=Btc are duTside \oop
@Repear until no new logp-invaciant stafements:

INVARIANT ¢ all rgqc\niry defs of B/C are oufide loop, or ech!y ane re«clninj def for B/C from INVARINT
sfatement within the loop

-(gde Motion
- Conditions
- Correctness : no chcmye in semanfics
- ferformance : ng slowdown
- “Defines once and for all”
* Confrol flow omce : code dominafes all exits
- Other defs for all: no ather defs

Uses of def forall: dom use or no gther peqd“‘nj defs fo wse
‘Rggressive Opfimization

ppppppppppppppppppppppppp

aaaaaaaaa

|nduction varidbles and sfrength peduciion (bonws maferial since schedule moved)
- Just went over motivation, €g.,arey access by index insfead of poinfer

C‘\apfer 95 Pactial Redundanc_, Elimination’. (35—92)

Rartial redundancy elimination : miniizing The number of expresion evaluations

Expression e is Tully cedundait at poiat p if it is an available expresion of that point
“Nof all redundany can be elimindied wnless we can change the flow graph
Crifical edge=any edge leading from a node with more than ane successor To @ node with mwe than one predecessor

Lecture 2/25

" Expression € parfially redundant ot P if E is parfially available there (evaluated a\onj at least one pa’rh to P)
Can insert Computation to make Farﬁallj redundan fullj redundant
“Loop invariants are parfral redundancies
Par’rmHj ava(laHt choally avlble ie downwards exposed

O ~ enfry=0 PP =PAvy-KiLL) U AvLaC

{ fwd b4 o if eatry

| meet=U PAVy =ip€¥d PourlP) “else
 Prficipated expressions £loailly anticpsted ie upwands expored

fard exif=0 MNTy = ANTwC U (HNTOUT‘KILL)

|
v bac : 0 if exit
0 meef n ANTWT 1!9&« ANT,N else

- Placement Possible
“Insert af eacliest place where PP=|
* PRy= Plaement Possble or nof neesmry in €ach predecessor black
- PPour = Placement Possle at €xit oF black or befare
Don't inserf where already available INSERT = PRur 1) (= PPy U KILL) N =1 AVyr
- Remove upward -exposed where PP=| DELETE = PPy NANTLOC

Formulating the Problem Computing “Placement Possible”
+ PPOUT: we want to place at output of this block only if *+ PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors — we want to place at entry of all successors
0 i=entry
* PPIN: we want to place at input of this block only if (all of): « PPOUT[] =
. . M PPIN[s) otherwise
— we have a local computation to place, or a placement at the end of this block s Esuccli)
which we can move up * PPIN: we want to place at start of this block only if (all of):
— we want to move computation to output of all predecessors where expression — we have a local computation to place, or a placement at the end of this block
is not already available (don’t insert at input) which we can move up
— we can gain something by placing it here (PAVIN) — we want to move computation to output of all predecessors where expression

v Forwardor Backward? is not already available (don’t insert at input)
’ — we gain something by moving it up (PAVIN heuristic)

— BOTH! 0 i= exit
. PR . il= ANTLOC[i] U (PPOUTI[i] — KILLi
* Problem is bidirectional, but lattice {0, 1} is finite, so PPIN[] (t Mo ti [
. . n 5PPOUT[p] U AVOUT[p]) otherwise
— as long as transfer functions are monotone, it converges. p Epreds(i
N PAVINTil

Morel-Renvoise Limitations

“Placement Possible” Correctness * Movement usefulness tied to PAVIN heuristic

— Makes some useless moves, might increase register lifetimes:

* Convergence of analysis: transfer functions are monotone.
« Safety: Insert only if anticipated.

PPIN[i] C (PPOUTIi] - KILL[i]) U ANTLOCIi]

0 i = exit . o
— Doesn’t find some eliminations:

M PPIN[s) otherwise -

s Esuccfi)

PPOUTIi] =

a+b a+b
« INSERT € PPOUT C ANTOUT, so insertion is safe.
Bidirectional data flow difficult to compute.
* Performance: never increase the # of computations on any path
* DELETE = PPIN M ANTLOC
s Don’t need heuristic
On every path from an INSERT, there is a DELETE. — Dhiaridhere; Dechsiér:stadel, Kioopietal

* The number of computations on a path does not increase. — use restricted flow graph or allow edge placements.

Related Work

Data flow can be separated into unidirectional passes

— Dhamdhere, Knoop, et. al.

Improvement still tied to accuracy of computational model
— Assumes performance depends only on the number of computations along
any path.
— Ignores resource constraint issues: register allocation, etc.

— Knoop, et.al. give “earliest” and “latest” placement algorithms which begin to
address this.

Further issues:

— more than one expression at once, strength reduction, redundant
assignments, redundant stores.

Chapter 9.53 Lazy Code Mofion to .55

-Lazy Code Motion
‘Eliminating partial redundancy with the goal of delaging compufations as much as possible
-Minimize register lifefimes

Putting it All Together

(a) Anticipated Expressions | (b) Available Expressions All the steps of the algorithm are summarized in Algorithm 9.36.
Domain Sets of expressions Sets of expressions Algorithm 9.36: Lazy code motion.
Direction Backwards Forwards
Transfer To(@) = To(z) = INPUT: A flow graph for which e_usep and e_killp have been computed for
i , X i X : each block B.
function e_usep U (x — e_killg) (anticipated[B).in U x) — e_killg
Boundary IN[EXIT] = 0 OUT[ENTRY] = 0 _OUTPIIJT: ;\’nmdlhed flow graph satisfying the four lazy code motion conditions
in Section 9.5.3.
Meet (A) n n
Equations IN[B] = fg(ouT[B]) ouT[B] = f(IN[B]) METHOD:
ouT[B] = /_‘,,4.,.(,,, IN[S] IN[B] = /\l’wml(lﬂ ouT[P] 1. Insert an empty block along all edges entering a block with more than
Initialization | IN[B] =U ouT[B] =U one predecessor.

2. Find anticipated|[B].in for all blocks B, as defined in Fig. 9.34(a).

3. Find available[B].in for all blocks B as defined in Fig. 9.34(b).

(c) Postponable Expressions | (d) Used Expressions

Domain Sets of expressions Sets of expressions 4. Compute the earliest placements for all blocks B:
Direction Forwards Backwards
Transfer fe(z) = fB(z) = earliest| B] = anticipated|B].in — available[B].in
function (earliest[B] U z) — e_usep (eusep U x) — latest[B]
Boundary OUT[ENTRY] = 0 IN[EXIT] = 0 5. Find postponable[B).in for all blocks B as defined in Fig. 9.34(c).
Meet (A) n y 6. Compute the latest placements for all blocks B:
Equations ouT[B] = fp(IN[B]) IN[B] = fp(ouT[B])
IN[B] = Appreacs) OVTIP] | OUT[B] = As suce(s) NIS]
Initialization | ouT[B] = U IN[B] =0 latest|B] = (earliest|B] U postponable[B].in) N

(4',11.941/; U ﬁ(ms_ S (earliest[S] U postponable [S].iu,)))
earliest|B] = anticipated[B).in — available[B).in
latest[B] = (earliest|B] U postponable[B].in) N

(I’JAN(BU “(n_ sadlE) (earliest[S] U]msl]unmlll(’[s].in)))

Note that - denotes complementation with respect to the set of all ex-
pressions computed by the program.

7. Find used[B].out for all blocks B, as defined in Fig. 9.34(d).

. . . : Bt s 8. For each expression, say z+y, computed by the program, do the following:
Figure 9.34: Four data-flow passes in partial-redundancy elimination ¢ I ay T+y I g Drogre 2

(a) Create a new temporary, say t, for = + y.
(b) For all blocks B such that x + y is in latest[B] N used[B].out, add
t = x+y at the beginning of B.

(c¢) For all blocks B such that z + y is in
e_usep N (—latest|B] U used.out[B])

replace every original = + y by t.

Lecfure 3/2

‘Lazy code mdfion
'Rephce bi-directional dataflow Placement Possible with 4 separafe unidirectional dafaflow Problem
‘Big icfure
‘Earliest : maximize redundancy elimination, buf long regis’rer lifefimes
‘Latest : same amount of r‘edunc\ancj climnation, but shorter register lifetimes

Critical edges
- Source has mulfiple successors
. Pestination has mulTiple predecessors

Full redundancy = cuf sef (nodes separating eniry from p, containing calculation)
- Pardial r‘edw\dancy= complefing @ cut™ set by qddf:)y operations
-The rest of lecfure seems To be going infg lqzy code mofin weeds

Chap‘fer 97 Region—Based Analysis

Previously : iterative dataflow analysis
© Create Transfer function for basic blocks
@ Find fixed point solufion by repeafed passes over the blocks
- Now: region-based analysis
-Find fransfer functions that summarize The execufion of progressively larger regions of The program
- Goal: Transfer functions for enfire Procedw?s/ programs
- Befter summarizes the effect of loops

 Region-based analysis
- Program=hierachy of regions = portions of flow graph That have only one paint of erifry
* Region = (nodes N, edges E) where
Jheader h in N that dominates all nodes in N
- If Bmﬂml n€EN, then mEN
-E s the seT of all contro| flow edges befween any n,n, €N, excepf possbly for some edges enfering h
- Focus an forward ﬂow/ back ward Flow is (vah'«ﬂ'ed

‘Constructing region hiearchy dekas Ieer
A ssuming reducible flow graph, ofherwise perform node splifing first
-A|9oﬁ1'hm

© Every block is a region by ifself (leaf region)
@ for each natfural loop in insde-out (innermast first):
o replae loop L with a single node,
[0 Replace fhe body of L by region R
{—) header (L) } }R:’ R}
P B P
R is calld a body region
Construct region R’ representing entire natural loop |
‘R is called @ loop region
"R"= R+ back edges fo header of loop L
@ IF the ertire flow graph is nat a nafural loop, add the region consisting of The erifire Flow qraph

‘Reducible Flow graphs =all graphs reducible fo a single node by T, and T, rukes
-1y * remove an edge from a node fo ifself
‘T, 0 if node n has single predtcemr m, and N # Flow graph entry, combire m and n

'N?Cessarj TransTer function assamp'h'ons
- Composition was qll That ifecative dafaflow needed
- Meet : (AR)(x)= £ (0 A KK
Closure: F*=/3 " where f"=qoing around the cyde n times

Chap"'er‘ 97 cont.

' Myorﬁ'hm

Algorithm 9.53: Region-based analysis.

INPUT: A data-flow framework with the properties outlined in Section 9.7.4
and a reducible flow graph G.

OUTPUT: Data-flow values IN[B] for each block B of G.

METHOD:

1. Use Algorithm 9.52 to construct the bottom-up sequence of regions of G,
say Ry, Ra,...,R,, where R, is the topmost region.

2. Perform the bottom-up analysis to compute the transfer functions sum-
marizing the effect of executing a region. For each region Ry, R»,... , R,
in the bottom-up order, do the following:

(a) If R is a leaf region corresponding to block B, let fgiNp) = I, and
frouTB) = fB, the transfer function associated with block B.

(b) If R is a body region, perform the computation of Fig. 9.50(a).

(c) If R is a loop region, perform the computation of Fig. 9.50(b).

3. Perform the top-down pass to find the data-flow values at the beginning
of each region.

(a) IN[R,] = IN[ENTRY].

(b) For each region R in {Ry,...R,_1}, in the top-down order, compute

IN[R] = fr inir) (IN[R']),
where R’ is the immediate enclosing region of R.

“Node -splitting
“Hondles nonreducible flow graphs

We pick some region R that has more than one predecessor and is not the
header of the entire flow graph. If R has k predecessors, make k copies of the
entire flow graph R, and connect each predecessor of R’s header to a different
copy of R. Remember that only the header of a region could possibly have a
predecessor outside that region. It turns out, although we shall not prove it,
that such node splitting results in a reduction by at least one in the number of
regions, after new back edges are identified and their regions constructed. The
resulting graph may still not be reducible, but by alternating a splitting phase
with a phase where new natural loops are identified and collapsed to regions,
we eventually are left with a single region; i.e., the flow graph has been reduced.

inal.

Y

Lecture 3/3

- Region-based andlysis in practice
- Faster for " . qmly:i;
“Vseful for aralyses relafed to sfruclure -

Optimization

* Let m = number of edges, n = number of nodes

* ldeas for optimization * Speed

— If we compute Fg g for every region B is in, then it is very expensive
— We are ultimately only interested in the entire region (E);
we need to compute only F g for every B.
* There are many common subexpressions between Fe gy, Fega, ...
* Number of F calculated = m

— Also, we need to compute Fg), Where R’ represents the region whose
header is subsumed.

* Number of Fy g calculated, where R is not final = n
+ Total number of Fg g calculated: (m +n) e
.

— Data structure keeps “header” relationship
* Practical algorithm: O(m log n)
+ Complexity: O(ma(m,n)), a is inverse Ackermann function

15-745.

45: Region-Based Analysi 24 fodd

1. Splitting regions may be beneficial for the optimization pro
can simply revise the flow graph to have copies of certain blocks. Since
cach duplicated block is entered along only a subset of the paths that
reached the original, the
tend to contain more spe

For instance, fewer definitions may reach each of the duplicated

blocks that reach the original block.

— Reducible graph & Cycles add information*

Algorithm 9.52: Constructing a bottom-up order of regions of a reducible

flow graph.

INPUT: A reducible flow graph G.

OUTPUT: A list of regions of G' that can be used in region-based data-flow

problems.

METHOD:

1. Begin the list with all the leaf regions consisting of single blocks of G, in

any order.

IS

. Repeatedly choose a natural loop L such that if there are any natural

loops contained within L, then these loops have had their body and loop
regions added to the list already. Add first the region consisting of the
body of L (i.e., L without the back edges to the header of L), and then
the loop region of L.

1

. If the entire flow graph is not itself a natural loop, add at the end of the

list the region consisting of the entire flow graph.

1) for (each subregion S immediately contained in R, in
topological order) {

2) fR.IN[S] = Aprvdeccssurs B in R of the header f)f S fn,OUT[B]?

/* if S is the header of region R, then fgiN(s) is the

meet over nothing, which is the identity function */

3) for (each exit block B in S)
4) frours) = fs.outs) © frIN(s)

(a) Constructing transfer functions for a body region R

1) let S be the body region immediately nested within R; that is,

S is R without back edges from R to the header of R;

2) f”«l-\'[-?] = (Aprode(‘essurs B in R of the header of S fS-OU'l'[f?])

3) for (each exit block B in R)
4) frours) = fsours) © friNs)

(b) Constructing transfer functions for a loop region R’

Figure 9.50: Details of region-based data-flow computations

There are two approaches we might consider.

ss, and we

-flow values at these duplicated blocks will
information than was available at the orig-

. If we wish to retain the original flow graph, with no splitting, then after
analyzing the split flow graph, we look at each split block B, and its
corresponding set of blocks By, Ba,... , Bi. We may compute IN[B] =
IN[B1] AIN[Ba] A -+ AIN[By], and similarly for the oUT’s.

Comparison with Iterative Data Flow Analysis

Applicability
— Definitions of F* can make technique more powerful than iterative algorithms
— Backward flow: reverse graph is not typically reducible.
* Requires more effort to adapt to backward flow than iterative algorithm
— More important for interprocedural optimization, optimizations related to loop
nesting structure

— Irreducible graphs

Iterative algorithm can process irreducible parts uniformly

+ Serious “irreducibility” can be slow with region-based analysis
— Reducible graph & Cycles do not add information (common)
« Iterative: (depth + 2) passes, O(m*depth) steps

depth is 2.75 average, independent of code length

* Region-based analysis: Theoretically almost linear, typically O(m log n) steps

*

Iterative takes longer to converge
Region-based analysis remains the same

Carnegie Mellon

Based Analysi 28 Todd C

L:a=
*E.g., Constant b=c
Propagation c=1
goto L

Chap‘fer 12.% Pointer Analysis + [2.6-127

- Poidter aliasin
“If two Poinﬂ’rs con poidf To the same ob)'ecT, then the Poin‘rers may be aliased
“Difficutt with arbi‘lraty cas’ﬁng ((void9 Lr'l,, indicect function calls (viefual methods)

Points-fo Analysis
‘Simplif] for now: flow - insensitive, confext- jnsensitive
* Jova program madel
‘Variables: refers To sfafic/live on runtime sfack variables of Type poirter fo T or reference fo T
“Heap objects: a heap of dbjecfs exist; all variables only powt To heap objects nof other variables
“Fields: a heap object can have fields, The value of a field can be a referene fo a heap object but nef fo a variable
- Flow- insensitive
“hssert variable v can point fo heap abject h
“(an ignore: “where can v-h" “in what confext can v—h”
‘Nofe: heap objcts unnamed, "v=%h" ="v @n point fo 21 of the objects created at stafement h”
Points-to analysis : defermine what each variable and each field of each heap object can point to
“Two pointers are aliased if their poinfs-To sefs infersect
“Dif ferent GPProqch?S
“Inclusion-based : v=w causes v To point To all objects w points fo, Nt vice versa
“ Equivalene = based : v=w furns v and w info ane equivalence class
“Flow - insensifive
“kgnore control Flow, stafements can execute in any order
“Assignment caanof kill, only generate
-Reduce size of resulf representation and converge faster; buf much weaker analysis
- (ontext- insensitive
‘Not in readi;y
Pacameters and ceturned values modeled by copy statements
' Fancy daTalog sfuff
- Confext=sensitive
" Problem: large Summanies, exponenﬁallj mang conTexts
‘ Clom‘nj-bqsed qnalysis
-Clone the methods, one for each confext oF inferest
'APp‘y confext-insensitive ana\ysis 1o cloned call 9raph
- But ot unommm To have 710" contexts jn a Java applicfion
“Two core problems

'Handlin, confext sensitivity ! App\j confext-insensitie ~ algorithm fo cloned call graph
Represent expanentially many contexts? Use binary decision diagrams (BDDs)
*Steps

ORun cortexct-insensifive points—to fo ge‘l' a call 9mph

©Create a cloned all graph
- Confext = represeatation of call string formiry ln'shry of adive fundion calls, some yﬂk skawiry around fecursion
"BDD for confext represedfation, but finicky (eg, variable ardering)

© More dafaloj,see book. There are some mildly iteresting opimizations

Lecture 3/4¢ Pointer Pralysis

Representation
Track poirfer aliases © more precise, less efficient
~Track pointi-fo information : less precise, more efficient

"Heap modeling
‘Heap merged ("no heap modeling’)
‘Allocation site [any @l to malloc -each a unique location)
Shape analysis (frees, linked st etc)

’Hggregq’re modeh’ry

Arrays

 Flow- sensitivik
‘Flow insedisitive - actually used in pracfice! very cheap
‘How sensitive - consider progrom pairits in CFG
‘Path sensitive - consider paﬂ'»i in CFG

-Pddress taken
- Basic fast, ulfra- conservafive Oln) analysis very imprecise
“ Flow - insensitive, confext- insensitive
- Generate sef of all variables whose addresses qre assigned o another variable
“Rssume any poinfer can point o any varjable in That sef

“Pndersen’s Algorithm
- Flow - insensitive, confext-insensitive, iterative
“One poinfs-to graph for enfire program, each node represents exactly one location
~To build the graph,
y=&x y points—fo x

y=x if x poinfs-fo w then y poin‘ts-fo w
*7 =X if y pointsto 2 and x pointsto w then 2 Poinfs-fo w
y=kx If X poinfs-to 2 and 2 pointito w then y patsto w

Werate unfil gmph no longer changes O(n")

- Steensgaard’s Mlqorithm

Flow- insensitive, confext- insensitive

“(ompact (but less precise) points—To graph with union-find, each node can represent mulfiple locations buf
can anly point fo at most ane ofher node, Oln)

Lecfure 3/4 cont:

‘Binary decision diagrams
‘Use BDD for representing fransfer functions
‘Pcurate and scales fo large programs
- (onfext-sensitive, infer -procedural analgsis

‘Prubabilistic pointer analysis
- Speculate with verify and recover
(an a’r’remp‘l’ fo quantify bene fits

'A|9on'ﬂ1m des;‘:}n
- Fixed
~Top -down vs botfom up
* Linear transfer functions
-One-leve| confext and flow senstive
" Flexible
"Edge Pmﬁ‘lmj vs static predu‘ch’on
~Safe vs unsafe
- Field - sensitive vs field- insensitive

Chap’rer 3.8 Regirfer Allocation

' Speed : Reg isTers % Memory»? Disk
“Register allocation : what values should reside in registers?
'Register assignment © in which regisfer should a value reside!

“Global regis’rer allocation

*Keep registers consistent across block boundaries (glabally) to save on same stores/loads
“Rssign some fixed number of registers fo hold most aclive values in each inner looP

‘Vsage counts
- Benefit = ’a% use (B) + 2 *live (x,B)

block # times x | i x live on ext from B and assigned value in B
r I‘,ﬁ:ﬁg& 0 otherwise ?

1 R?g(sfer SPillmg
When all registets used, one must be spilled to memory
’Two-Pass 7raPh colaring
O Assume “0o symbolic registers
@Assign Ph’skal r‘ey isters to Symbt?'k anes
“Nithowgh graph cloring NP-hard, qood heunistic in pracice:
if node n has <k neighbors
femwe n and its edges
either :
O abtain emp‘y 9raph, produce k—colorin) by Joing in reverse
@ nof empty graph, use Chaitin’s heunistics for sPillinj

lecture 3/9 Register Allocafion

- Inferference graph
“Undirected 9raph
*Node = pseudo- register

"Edge (n,,n,) if pseudo-registers n, and n, inferfere ie, af some pointin the program +h9 canndf
both occupy the same register

-Live vanges
* Motivation: Create an inferference raph That is easier To color
‘Live_range = live variables + reaching definitions
‘A live range is a definition and all progeam points in which fhat definition is live

- Two overlqppinj live ranges mut be merged (meryed live ranges also known as websg)
-Merging = unconverf out of SSA

‘Optimadtion thaf is both faster and sometimes be’r’rer,only check for inferferene af start
of €ach live range

A and B can use same reyisfer!

Graph <o|or‘vy extended

Chaitin: Coloring and Spilling
IV. Extending Coloring: Design Principles
Spilling to Memory

Spilling

What should we spill?
. Apply coloring heuristic ~ Something that will eliminate a lot of interference edges
* Apseudo-register is

. asc Build interference graph ~ Something that is used infrequentl
~ Colored successfully: allocated a hardware register L g Iterate until there are no nodes left 8 a v
~ Noteolored: eftia memory ~ can operate on data in memory directly If there exists a node v with less than n neighbor ~ Maybe something that s live across a lot of calls?
a ~ memory operations are slower than register operations push v on register allocation stack
* Objective function else
+ RISC architecture
~ Cost of an uncolored node: architectures

v = node with highest degree-to-cost ratio

5 pilled One Heuristic:
- ine instructic n onls ly isters PSS S *1 0loop-nest-deptt
+ proportional to number of uses/definitions (dynamically) AcHKag Insirctons €an ooy seply o regieters. remove v and its edges from graph — Cost-to-degree-ratio = [(# defs & uses)*10°oP"estest]/degree
* estimate by its loop nesting = Use . " i " i
o ivian sum of sodk of unecloredi nod + mest s hoad datafrom mamory 103 regitarbefora e « spilling may require use of registers (must reload at each use, store at each — Spill node with highest degree-to-cost ratio
~ Objective: minimize sum of cost of uncolored nodes o def); change interference graph
. - Definition
Heuristics + mustirst compute RHS in regster While there is spilln
Benefit of spilling a pseudo-register: + e b momory shararnrds rebuild interference graph and perform step above

+ increases colorability of pseudo-registers it interferes with
+ can approximate by its degree in interference graph

~ Even if spilled to memory, needs a register at time of use/definition Assign registers

While stack is not empty
~ Greedy heuristic from stack
- spilthe pseudo-register with lowest costto-benefi atio, whenever spllng s Reinsert v and its edges into the graph
necessary

Assign v a color that differs from allits neighbors

N -~ v [

Insight
Splitting Live Ranges - - . _—
A Spilling Algorithm Focused on Live-Range Splitting
« Different perspective: Instead of choosing variables to spil, choose live range .
« Problem: Can give up on coloring too quickly 2

Split a live range into smaller regions (by paying a small cost) to create an n=3

« split pseudo-registers into live ranges to make interference graph easier to color interference graph that is easier to color Observation: spilling is absolutely necessary if
- /s “dead” z0ne = ok
Eliminate nterference in 2 variable's ~ Eliminate interference in a variable’s “nearly dead” zones — number of live ranges active at a program point > n
~ Increase flexibility in allocation:
* canallocate same variable to different registers * Cost: Memory loads and stores

No spilling required, but

~ Load and store at boundaries of regions with no activity Aply live-range splitting before coloring
Chaitin's Algorithm spills

- f live ra 34
« Initially: # active live ranges at a program point can be > # registers lentify 8 polnt whers numberiof lve rsiiges =0
n=2 — For each live range active around that point:
* find the oute t “block truct”
— Can allocate same variable to different registers e
that does not access the variable
c * Cost: Register operations

An optimization: “Prioritize the coloring”
~ still eliminate a node and its edges from graph
-~ Do not commit to “spilling” just yet

~ Choose a live range with the largest inactive region
~ Try to color again in assignment phase — aregister copy between regions of different assignments — Split the inactive region from the live range
* Goal: # active live ranges cannot be > # registers
Problem: All or nothing

~ Why not try to keep a pseudo-register in a hardware register part of the time? splitx,
then can color

Carnegie etlon. [Carnegie Mtk

Mellon

- Should pmbabl wrriteup 1T ot some PoihT
- Also mentionéd: coalescirg

G)apTer 10:] Processor Acchitedures + 10-2

“Instruction pipelining
*Goal: instraction-level -parallelism
*Branch instructions problematic
'Mavy processors : speculatively fefch and decode imme diately Su(ceedin) branch not faken instractions
-When branch faken, emply insfrudion pipeline, fefch branch TargeT
“Advanced processors use hardware To predict branches based on execution history
Pipelined execution
-Some instructions fake several clocks To execute, €.9., memory Joad
“An instruction’s €xecution is PiPeImed if Succeeding instructions nof dependent on the result are
allowed 1o proceed
“Most general purpose processors dynamically detect dependencies befween consecutive instrudions, aufomatically stall
* Simple / low-power processos (e embedded) require compiler o insert no-ops
"Managing parallelism
+ Software : VLIW (very long instrudion word) machines
“Wider instruction words encode the operations fo be issued in a single clock
‘Hardware : supersalar
‘Au‘fomaTicallj defect dependencies befween instructions, issue as operands become available
- Come processors have both VLIW and superscalar Funch'onaliy
“Hardware schedulers
“Simple: execufe instruclions in order of feich
' Sophisticafed: execute out of order, buffer stalled aperations
-Both benefit from static Scloeduliry

“(ode Schedull'nj consTraints
- Conirol- dependence : all operafions execufed in original must be executed in optimized version
‘Data-dependence: operdtions in opfimized must produce same results as operdtions in original
'Rewurce constraints: schedule must not oversubscribe The resources on ‘ch machine.
-Guaranfees same result, but not same memory shafes - harder to debug

Data-dependence Types
- True dependence : RAW read-after-write dted depnd
. Anti : - Sforage-relate ndencies
Antidependence : WAR wnfe-aﬁer—read. }Cq:'?lfmmé by u,’:f,, different
- Qufput dependence: WAW write -after-write) locations fo store differeat values

Data dependendies apply fo both memory and Peyisft’r‘ access

'Findmj dependencies
“Generally undecidable at compile-time
-Highy sensifive o programming lqn’uaye used

‘Regiskr Usage vs Parallelism
- Traditional register allocation minimizes number of registers used
~But using the same register infroduces <forage dependencies
“Computer architects infroduced hardware register renaming fo undo this : dynamically change register assignment

Chapter (02 cont:

“Phase orderin
- Register allocation =+ scheduling: many storage dependencies
- Scheduling > register allocation : may require so many registers that excessive register spilling occurs
~ Pepends an characteristics of the program being compiled

Control dependence
‘Basic blocks small on average (¢5 instructions)
‘Operations within same block offen highly relafed, little ~parallelism
“Instruction i, confro| -dependent on instrucion i, If the oufput of ¢ defermines whether ¢ executed
if (cond) 15} else 15}
S, and s, Qre Confrol-dependent on cond
“Can speedup program with speculative - execution

'Speculaﬁve execulion support in processors
* Prefetch
 Poison bits
Predicated execulion

‘Skipping over machine model

Lecfure 3/10 Local Instruction Scheduling

'\Alhy nof make deeper and deeper PiPell'nes?
In befween sfages CPU registers must be stored. Diminishing refurns, Amdahl’s Law.
‘Picline slage value unclear i already faster than infeger add

'Scheduliqg limitations
“Hardware resources
“Finite issue width
“Limited funcfiona| units for each instrudion Type
- Limifed Pipeliniy within one functional unit
Dota dependencies
*Some insfructions fake more Than one cycle T execule
-Confrol dependencies

-List Schedulinj: within a basic block
- Global Scheduhnj-‘ across basic blocks

Software Pipelining: across [oop iferations

Lecture 3/10 cont:

List Scheduling
*NP-hard
 Input
-Dafa precedence 3r‘qp|n
“True edges E RAw dependencj , mut wait for completion fo stacf next
‘At edges ' WAR dependency, can start fogether as long as next finishes later
“Machine quame’rerj (# FUs, |afenctes)
-Quipaf
-Scheduled code (which instructions To start in a cyde)
‘ngoriﬂnm
‘Mainfain a list of insfructions that are ready To erecute
‘Moving cycle-by-cyde through the schedule femplate,
-Choose’ instructions from the list and schedule Them baed on priorifies
‘Update the list for the nexf cycle
Priorities
“Factors
‘Data dependencies
“Machine * paramefers, eq., lafencies
-For frue dependencies only
“Priority = latenc —weijh’red depth in D/‘\G'Jl
Priority () = max (¥, ces(opg Ypepathsts 1) Z pix |a1?“fj(Pf))
-To account for anti-dependencies
- Priority (x)
= { latency(x) + max (lafency () +ogee priorifyy) if % is a leaf
“',;'Q’E, Priotifj(’) ofherwise

List Scheduling Algorithm

‘Backwaed List Scheduh'ng
*Reverse direction of all DPG edges
“Schedule The finish fimes of each operdtion
'Thoug\n start times still needed for FU
“Will cluster operations near the end insfead of near the beymm'ng
'May be betfer/worse than forwerd s Cheduliy

- Evaluation

- RBF schedulin
-Schedule each block M times backward and forward
‘Break ties randoml

‘For real programs, reqular list scheduling works very well

“For synthefic blocks, RBF wins when ~available ~ parallelism is ~1.5
- €25, scheduling foo constrained
- 725, ony decision Tends fo work well

List scheduling ws‘de\y used on in-order processors

Lecture 3/l Global Scheduling and Software Fipelining should read

- Conitro| - rejafed Terminology

“Two operations ¢, and o,

~Confrol-equivalent if 0 is executed Ff 0, is execuled

-0, (ontrol-dependent on o, iff execution of o, dependent on oufcome of O

‘Operafion o is spe(ulaﬁvely excaifed f it is execded before all the operands it depends on corfrol-wie

have been executed
- Buf cannet raise an exception
And must Sa'h‘sfy dafa dependencies

03-10.5

‘Basic global schedulin
- Schedule innermost” loops first
“Only upward code mation to either
- (orfrol -equivalent block ~ (nan-speculative)

- (onfrol-equivalert block of a dominating predecessor (speculative, | branch)
‘No creation of copies

Useful Definitions
« Blocks B and B’ are control equivalent if
— Bis executed if and only if B’ is executed
— E.g., which sets of blocks are control equivalent?

Extension
Basic Algorithm

+ Inregion-based
Compute data dependences;

duling, loop i ion boundary limits code motion:
operations from one iteration cannot overlap with those from another
n R in the hierarchy of loop regions from inner to outer {

et * Prepass before scheduling: loop unrolling

culative(B) U Speculative(B);

heduled) { // schedule time slots in order
// may or may not be from B

ce conflicts at time t) {

for (i = 0;
ruction n is mapped to basic block B and time slot t

Note: Two ops (instructions) are control equivalent i
their basic blocks are control equivalent

* Especially important to move operation up loop back edges
control
(could be from same basic block)

* NonSpeculative(B) = all blocks that are control equivalent
to B and dominated by B

i+4 < N; i+=4) {
S(i);
resource for (i = 0; i < N; i++) { S(i+1);
Update data dependences; S(i);
}

S(i+2);
}
* Speculative(B) = all blocks B’ not control equivalent to B }
such that

S(i+3);
Update Candinsts; // scheduled insts will often make new insts ready Original Loop ; (i< N; ith) {

or (;i i &

— B'isasuccessor of at least one block B” thatis ~ NonSpeculative(B1)?) S(i);

control equivalent to B, and }]

. NonSpeculative(B2)?
— B’ is dominated by B” P (82)) }
Speculative(B1) ?
Move up to a control-equivalent block or i) Priority functions: Non-speculative before speculative, and otherwise use same priority as in list schedul Unrolled Loop
STeGtol-eqUIVAaHE Block of s deminating fretiasessor. SPeculative(B2)7 Ok to move: Don't speculatively move a store instruction, don't move a procedure call, etc
arnegie Metion. [K

arnegie veton [T I rnczic Meton [

‘Sof fware pipelinin
‘Across loop iferations

“Unlike \oop uarolling, can give optimal ~pesulf with small code sie blowup
Goals

- Maximize Thmughpu’r
-Small code size
-Find
‘An identical relatie schedule St for every iferation
‘A constant initiation inferval T
~Such that
|nitiation jaferval s minimized

-NP- complete

Algorithm

- See texthook /s\ides
@oes in The weeds

‘Has inealm\'rh'es efc

LECTure 316 Dynamic Code Opﬁﬂ'iza'ﬁon

- Mtivation
Undersfanding common dynamic behaviors helps opfimizafion (control flow, data dependencies, inpuf values)
- Useful for speculative scheduling, cache optimizations code specializatians, efc.

- Profile- Based ComPile—'l'ime Qptimization

ing ted
O Comple staticall [~ —tes]”
@ Collect execution profile =2 "

@ Re-ompile with execution profile R o] - &)
‘Collecting conifrol Flow profile usually rot oo espensive
Collecting input values profile much “more expensive

* Instrumenting executable binaries
‘ComPilel‘ could insert instrumentation dI'PCI‘.‘ﬂj
* Binary instrumentation Tool could modify ©xecafable direc’ry

“Binary instrumenfation approaches
- Static binqry—To-binag rewriting
* Cha llenges
' lnpuT is binql’y
Optimization: No Source code, less info Than original compiler
Intrumentation: Time/space overhead of instrumenting code
* Inferpreter
- Grab, decode, emulate €ach instruction
" Good* works for dynamic Icmyuqyes, easy o change exeution on the fly
- Bad: runtime overhead
- Sweet spot?
-Want: flexibilify of interpreter, performance of direct hardware exeaution
* Increase the 9mm\ury of iriferpretation (instructions —> chunks of code)
'Dynqmicauy compile code chunks into Jc‘recry-execufed aptimized code
* Cache compiled chunks info software code cache
- Jump in and oul of cached chunks as appropriate
- The cached chanks can be uPdaTcd
“|vest mare time info oplimzing code chuaks That are clearly hot

* Chunk- Based Dynamic Optimizer
while sﬁll_execuﬁpyi
if not compiled (po):

. pc=program counfer
comple And (ache (po also, not all code needs fo be

J'ump '"T‘;_(';‘h:ﬁ; CC)() compiled (e-9./ adaptive execution)
PC= 9\? €

Lecture 3716 cont.

. Tyqu' nT comPiler

mic code
ety |~ e ey
)] information
DN
cache man /]
e A ey

f Dynami(Cvm’n'/afion Poh’g

A]:W = -':ompie ‘("mmm'-ﬁmrm:mf’

) T fufuson better code
t but shwer
FL
Startyp Speed | Execition Performance
Infer prefer Best Poor
Quick compiler Fair Fair
OPTim'aig Compiler Paor Best

: N\u\’ri~sfa9c compilation
- Execufion count = method invocations + back edye: execufed

inferprefed] —— | Compiled | —— | fully opfimized
Cdﬁre execution code %g:;:g‘?l CyOdQ
stage | 7Y stage 2 stuge 3

-~ Compilation Granularif

- Vsua I!y nof per method, even hat methods have rare|y exewfed code
- (ompilation time ok amount of Code compiled
- Methods can be Ian}t especially with inling, but mlmrfy very imporfqn‘f for performance
- Simple technigue
“Track exccution counts for basic blocks in shges | and 2

- Basic blocks that exewle in sfage L are nd rare

% of Basic Blocks that are Executed > Threshold Times

(hence get compiled under per-basic-block strategy)

100.00%

—e— L npack
—=— JavaCUP

80.00%

60.00%

40.00%

—a— JavalLEX
—m—SwingSet

—»—check
—e— com press

—— Bss

20.00%

——db
~— pvac

% of basic blocks executed

0.00%

500 1000 2000 5000

execution threshold

—e—m pegaud
—a—m trt
—— pck

Carnegie Metlon [l

Lecture 3/|6 cont
~Partial Method Compilation

O From profile data, defermine the set of rure blocks é Goal: white blocks compiled;blue block interprefed
® Defermine live variables af rare block erry points ¢ Y New challenges:
@ Redirect control flow for rare blocks G\, ./- “Transition white-+blug blue-swhite
(;}": - (;}M;mmfer lil Compile Joptimize ignoring blue
¥ G WS

@ Perform compilation normally
BRecord a map for each inferprefer Transfer point
+ Map : live variables = location (register/memary) X sp-4
1 i
'TYP'm"] <100 by‘l?: i:sp-8
“Used o reconstruct mfmp state

‘Partial Dead-Gode Elimination
‘Move computation That s only live on a rare path ino The rare block
May undo an optimization

’i(fz((’VNLl KeLy (condI if guu KELY (cond
} -3 ;
if (UNLIKELY (cond2)} if (UNLIKELY (cond2)}

"Escape Analysis
-Find objects That do not escape a method or @ thread
- "Captured” by replace ields with local variables
“Method: allocate on stack/in registecs insfead of heap, or scalar replacement
‘Thread: can awoid ~synchronization operations

- Partial Escape Pnalysis
*Stack allocafe objects That don't esape in the common blocks
 Eliminafe - synchronization on objects thaf don't escape in the common blocks
‘If ends up branching fo a rare block:
: Copy stack - heap, update painters
Reapply eliminated synchronizations
'B(amplfs
- Graal

Benefits from Partial Escape Analysis Dynamic Optimizations in HotSpot JVM HotSpot JVM and Graal Dynamic Compiler

Lec‘l'ure 317 Domain‘SPeciﬁ‘c Languages

"MapReduce (open source version: Hadoop)
"Graghtab (fhink like a verfex)
DSL Design Guidelines * (Karsai et al DsMod]

Delite
- Performance = heterogeneous + parallel

-Goal: common DSL framework
Delite DSL Compiler Experiments on ML kernels

®OptiML ®Parallelized MATLAB WMATLAB + Jacket

Naive Bayes z K-means .
1100 3
00

35 A . a3
) CH—-—r - —
25
Erd
15 |9
10 P - o
05 =N <N
00
1CPU 2CPU 4 CPU BCPU CPU +
GPy
RBM
12 @9
10

GDA
{25y
f0 @
§
jroof e
i 1o gl om 2% o
1oHiu
100
§ % tovzcmacs
SvM
150

Regression

70

g Fe— M |
PP INCTCEE: | P
00

e -

OptiML+Delite outperforms MATLAB

“Halide : image processing
'Designed for experf Programmers
 Systematic model for locality, parallelism, redundant computation in stencil pipelines
'Schedulinj representation To ensi!y iterafe - and an autotuner To empiricaly Find good schedules
-PsL compﬂer‘ cambines Halide programs and schedule descrip‘h’ons
-LOOP syn'l‘nes,‘zer for data parallel Pipclinl’s based on simple interval analysis
- Simpler and less expresive by polyhedral - model
“More general in class of andlyzable expressions
- (ode 9enem1'or for high quality veclor code
“The Halide falk slides are worth checking out
'Haln‘de: decouple ql,ori‘ﬁlm from schedule
“Algorithm: pipelines are pure functions from coordinates to values
" Domain scope
'(ompufahbnr are aver reyulqr]rid_s
'On!y feed-forward pipelines
“Recursion must have bounded depth

- Sttucture
|Nau PNaC!
HQME in-bv/uwsc‘r‘)
Fondioe
N \syrrl‘nes;hv.eé _— Vecf:,m[ahm, — ly;l:rm /
oo nesting, peephole i —
i1/ lton’| i N
Schedule \
* Tradeoffs
redundant < S .
work lomln‘y

Para lefism
rond'minig
order

Lecfure 3/18 Memog Hfﬂfal‘(hj Optimiaations

- (aches
-Cache hierarch

'"R/pn'cq\ camﬁ‘ywra’n‘or\; and quameTEr;

'Op‘l‘imizig caches
- Temporal 'Ocalﬂ_'j
: SpaTial lom\i"fj
- Minimize conflicts
- Time : reorder compufation
“When is an abject accessed”
“How to predu'cf betfer access time?
- How o ensure safe’ry?.
- Space’ chqnginj dafa \ayou’r
- Where is an object |ocafed?
- What are better layouts
~To what extent an lagout be saﬁ?lj modified?

“Object Types
- Scalars
- Structures and pointers
“ Arrags

“Scalars
. L0ca|5
- Globals
Procedare arguments
- Structures and pointers
- Within nodel
 Across nodes?
’ Arrays
“Usually accessed within Joop nests easy fo understand fime
* Undersfanding - accesses = sfart of array, relative position in_ array

+ |feration space > each posifion Pepresedts ane iferafion, not the same as difa space
for =0 fo N-1: Fade o ifessos
for j=0 o N-I: 2 things
Atiagd= BLLA

N

RN
OIS TeeroNs

P dooco
oo

‘OPfimizinj array accesses
“When do cache misses occur? Locality analysis
- (on changc iteration order/data layout?
" Evaluating cosf
'Checkirg Correctness : dependence analysis

LBCTW‘ e 3/18 cont

- Some opfimizations
 Loop |nferchange
for (=0 To N-J for)=0 to N-I
for =0 fo N-I for (=0 to N-I
Ao =ix) 2 Aia = ix)

dssume ¢ VBoo0o0
N large oo
relative To . .

cache size) C
- Cache B’ockil\j (aka ﬁlir_»,)
for =0 to N-I¥ for J7<0 to N-1 by B:
for J=0 to N-I! for ©=0 fo N-I:
f(ALI, AG) N for j=73 fo Max(N-y, TT48-1):
£(A1Q, AN)

~(an also be doe in malfiple dimersions, €-9., matrix muH‘:p\)

'LOCali'bc Hnn\ysis

-Reuse : aceessing a location that has been accesed in The past

'L0ca|i1'y? dcressing & location that is now found in the cache

“Note: |0C“|"Tj only occurs when there is reuse, but rewse doesn't always resyft in localifj

Steps
OFind dofa reuse
@ Defermine Jomlized iferafion space : set of inner lops where data is expected fo fit within the cache
® Reuse N Loclied iferation space = Loaalify

“Types of Data Reus/Localty

for (=0 to 2
for j=0 o 100
ALilGI = BL;I0 + BL)+T0)

i . .
09o g0 '$o000co ¢
09090 | 00000 _

))

ALidj) spatial 81;+1)i0) Temporel BI;)L0) Group

‘Reuse Analysis
“Map n loop indices into d arroy indices fo map time info space
f(f)=H#+c
e AN Q)

%‘}([{,) = s+ @)

“Temporal feuse occurs between iferations 7, and T, when
Hi, +€ = Wi, +< , equivalently, H (5-1,) =0, equivalently, ceuse occurs along direction vecfor # when H& =0
So just compute the nullspace of H

Spafial reuse (for row roojor)
Hs =H with last row replated with 0
Nullspace of Hs gives vectors along which we access the same row

Lecfure 3/3 cont:

- Reuse Analysis - cont
“Group Pnalysis
~Only consider uniformly generated sets where index expressions differ anly bj constant Ferms
* Check if same cache)ine (constants could be Too far apart)
 Only leading reference suffens bulk of cache misses, so compiler focuses on that

loalized Iteration Spqce

oooooooooooooo
llllllllllllllllllll

for
for
AL 3100) + B[3+1]10);
‘00000000 | ‘eeee\ecee
B[3+1110] 60000000 B[3+1110] ..oo%oooc
oooooooooooooooo
3 3
Localized: both i and j loops Localize: d: j loop only
a 0.1)) (i.e. span{(0,1)})

[a than effective cache size

'Lacalh‘j
Reuse veclor space N Localized Veclor Space ?Loca\n) Vector Space

Lecfure 3/23, 3/24%3/25,3/30

*Paper discussions, project meeﬁn}mm future Textbook (’eadl'n9£ seem very random, naf making nafes for those.

Lecfure 3/3] Prefetching Arrays

‘Memory lafenc
-Reduce : locality opfimizations as before
‘Tolerate : prefefching

'Prefe’rchmg
‘Overlap memory accesses with ~computafion and ofher accesses
Types
“Cache blocks : -limited To wnit-stride accesses
-Non-blocking loads: - limited abilify fo move back before use (run out of regisTers)
*Hardware - confrolled : -limited fo wnstant strides, branch prediclions + no insfruction overhead
“Software-confrolled : - complexity, overhead + minimal hardware support needed, broader caverage
-Ccm(epfs
- Possible only if addresses can be defermined ahead of time
'Coverayc factor = fraction of misses PrefeTched
-Urmecessafy if dafa alr‘ead) in cache
-Effective if dafa in caché when later referenced mises are, e;pen;ive buf Tyffcd
“Two main concerns f hif cate is >C0% awid giressing memory
O T — AN
- nalysis : what o prefefch (max coverage faclor, min unnecessary prefetch)
'Schedulirgf when 1o prefetch (max effectiveness, min averhead per prefefch)

Lecture 3/31 corf:

- Prefetch Predicate : prefetch when predicate is frue

Locality Tgpe | Miss_Instance Predicate
None Every iferation True
Temporal First iteration (=0
Spa‘h‘al Every R iferdlions | ¢ mod £=0

‘Loop split fing

[$]=[aa

J—))modZ:o

Decompose “loop To isolfe cache miss insfances, cheaper Than if stafement

Localify Type Miss |nstance |Lo%P Transfonmation
None Every iferation None
Temporal First iteration | Peel koop
SPG'“G‘ E\my R iterations | Unroll loop by i

- Software pipelmh]y
- ferations ahead =[s

memory lafent!
hoeTest path through lagp body]

Loop - Prolag + S‘feady State + Epilg

Example Revisited
Code with Prefetching

Original Code.

o
@@ Cache Miss

AL [3)
*ececeoceo
L Jel Nl Nei e
ecece0e0
i

B[3+1] 0]
00000000
00000000
ooo0o0o0000
3j

- Experimental results

Uniprocessor Cache Performance on Scientific Code

rom 15 to 21 (average = 6)

‘Prefetching indirection ALindext:d)
Palysis : heuristic That assumes hit/miss (dense/sparse)

- Scheduling : prefetch index £ iferations ahead
IF 5 cycles pmfefch(&index[iﬂ()]),' prefefch(&h[inde;c[i+sj)/'

-Conclusion

-Software prefetching effective
‘Hardware should focws on Prwidirg sufFicienl memory bandwidth

Lecfure &/ meehhing Pointer-Based Structures

+ Goal: fully hide lafency, compule af /W rdfe
L= loading a node af 'f" f"ff‘l” i Lsw
W= work N = Ny Ny P Nig3
I L=3w, prefetch 3 nodes ahead
~Without prefefching, rate = oW
'Pl‘ef?’fchiv!, | ahead, fate = e
Frefetching n ahead, rate is still T
fointer chasing is limifed fo T,each iferdtion must still fetch pointer

- Pointer - chasin
‘Key: n; needs &0y without referencing d-1 infermediafe nodes
“Three proposals
'Greedy P use existing painters in n; To approximate fnita
History- pointer : add new pointers fo n; +o approsimate &1,
‘Data linearization : Compute £y directly from &n;

Greed
‘Not” for linked lists, but €9, tree
-Prefetch all neighboring nodes, hope others visited later
'Keasonab!y effective in pracfice, buf Iitfle (ol over prefﬁ(\m'ry distance

“History - Pointer
-First fime. adds history poinfers
‘Subsequent Traversals use the history ~poinfers
ssumes past predicts future, frade space and time for prefetch disfance

- Dafa- Linearization
'|f fraversal order Known, map nodes close in Traversal fo configuows memary

'Summqu, Experimental Regults

Summary of Prefetching Algorithms Performance of Compiler-Inserted Greedy Prefetching . Coverage Factor
¥ wl g

] Unnecessary Prefetches

11111

more dif ficulty

« Eliminates much of the stall time in programs with large load stall
penalties
~ half achieve speedups of 4% to 45%

+ Greedy prefefching is the most widely applicable algorithm
~ fully implemented in SUTF

Reducing Overhead Through Memory Feedback Performance of History-Pointer Prefetching

Lecture &/6 Array -Dependence Analysis

‘Four Types of dafa dependence
“Flow (true) dependence S 8 5 RAW
“Arti dependence $$8'S WAR
‘Oufput dependence S &S WAwW
‘Input dependence S 85, RAR

“\lalue-oriented : preserve values i enough 4
- Locattion-oriented : our focus, obliviows fo values

Dependence distance
Same loop iterafion, lup- independent dependence, S; 8,5 or S &S, direcfion is =
‘Flows befween lowp iterations, lovp-carvied dependence, S; 85 or 55,5 , direction is & aka posifive

Example 4 Problem Formulation

- e Dependence testing is equivalent fo an integer linear
dod'a’jzz’; 4 s22] a0 a4 s programming (ILP) problem of 2d variables & m+d constraint!
2 e:dljl: ofi-L+D) e Analgorithm that determines if there exits two iteration
ehdda vectors k and] that satisfies these constraints is called a

dependence tester.

An instance of S precedes ,”
another instance of Sand |

S produces data that S \i[gg’j/

consumes.

The dependence distance vector is given by j - k.

The dependence direction vector is give by sign(j - k).

S is both source and sink.

Dependence testing is NP-complete!

e The dependence is loop- L=
carried. ! A o A dependence test that reports dependence only when there
e The dependence distance 5.[3?]// '// is dependence is said to be exact. Otherwise it is in-exact.
is (1,-1). . £ 3
N N N e A dependence test must be conservative; if the existence of
S8.S or S8,S a(4,2) a(4,3) a(4,4) :::‘i:gznce cannot be ascertained, dependence must be
Carnegic Metion [l
Optimizing Compilers: Parellelization 12 Todd ¢ Mowry QUi CopiirE: Puraszien e

‘Went over Lamport fest, GCD fest

Loop Parallelization

Loop Parallelization
e A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
& a(i, j) = .. The iterations of a loop may be executed
== =ai,j) in parallel with one another if and only if
bGi) - no dependences are carried by the loop!
o Y, i
t cll, %
5~ il 2 -1, §)
end do
end do

e Outermost loop with a non “=" direction carries dependence!
Carnegie venon [Y e Meton [

Optimizing Compilers: Paralelization -35- Todd C. Mowr
Outimizina Comilers: Parallelization 34 Todd € Mawr ptinizing Compilers: Prallelz =

Loop Interchange Summary

e Array data dependence testers:
- Use a cascaded approach, performing cheaper tests first
- Summarize dependences with respect to surrounding loops:
+ may produce distances (1,-1) or directions (<)

doi=1n doj=1n .
doj=1n doi=1n e When is it safe to run a loop in parallel?
s B . a(i,j) - - When that loop does not have a loop-carried dependence
end do end do « outermost loop with a direction other than “="
end do end do

* (combine together for all array references in loop nest)

e Whenis it legal to interchange or block/tile loops?

- When all dependences remain lexicographically positive
« outermost direction other than "=" must be "<" (positive)
« otherwise, sink would occur before the source

e When is loop interchange legal? when the “interchanged”

dependences remain lexicographically positive! Carnegie Metion [

Optinizing Compilers: Pralllzation -53- Todd C. Mowry
Carnegie Metion [JIl

Optimizing Compilers: Parallelization -45- Todd . Mowry

Lecfure &/7 Thread-Leve) Specaldtion

-Sounds like OCC for handware, check then refry or commit
- Difaflow for Schedulin
“Stack find instructions o compule forwarded value
 Earliest : earliest nade to compue forwarded value
-See slides or paper for defads

