
(op o) : (’a -> ’b) * (’c -> ’a) -> (’c -> ’b) ; (f o g)(x) = f(g(x)), (op o) o (op o) is ill-typed
- foldl (op ^) "" ["h","e","l","l","o"] ; val it = "olleh" : string
- foldr (op ^) "" ["h","e","l","l","o"] ; val it = "hello" : string
Staging : SML functions are pass by value, i.e. function arguments evaluated at bind
fun f3 (x:int) : int -> int = let val z = horriblecomputation(x) in (fn y => z + y) end
Proofs
In CPS proofs, usually we apply inductive hypothesis early. Don’t reason about when s or k is called because that may assume your code is correct. If
we have exceptions, we want to case on whether exception was raised or not
Regex: (SOUND: matches => in language, COMPLETE: in language => matches)
Sound: assume cs, k such that match(regex) is true. NTS that there exist p, s such that p@s = cs, p is in the language of the regex, and k s is true.
Complete: converse of Sound
Writing Continuation Functions
• In base cases, we apply the continuation instead of directly returning a value
• In recursive cases, the continuation acts as a functional accumulator.
• In exceptional cases, we may discard (or duplicate) the continuation to circumvent the normal control flow.equivalence on basic types != equivalence
on function expressions
Basic types: “both evaluate to same value, raise the same exception, or fail to terminate”
For function expressions, they just need to evaluate to extensionally equivalent function values (e.g. fn x => x + x, fn y => y * 2)

Exception
fun addqueen(i, n, Q) = let
 fun try j =
 (if conflict (i,j) Q then raise Conflict
 else if i=n then (i,j)::Q
 else addqueen(i+1, n, (i,j)::Q))
 handle Conflict => (if j=n
 then raise Conflict
 else try(j+1))
 in try 1 end

Option types
fun addqueen(i, n, Q) = let
 fun try j=
 case (if conflict (i,j) Q then NONE
 else if i=n then SOME((i,j)::Q)
 else addqueen(i+1, n, (i,j)::Q))
 of NONE => if (j=n)
 then NONE else try(j+1)
 | result => result
 in try 1 end

Failure continuation
fun addqueen(i, n, Q, fc) = let
 fun try j =
 if j=n+1 then fc()
 else if (conflict (i,j) Q) then try(j+1)
 else if i=n then (i,j)::Q
 else
addqueen(i+1, n, (i,j)::Q, fn () => try(j+1))
 in try 1 end

Summation formula
Geometric series:

, (and if), ∑
n

k=1
rk = 1−r

r(1−r)n r|| < 1 ∑
∞

k=1
rk = r

1−r

Some trees: (homework 4), 2 d)2∑
d

i=1
i i = (− 1 d+1 + 2 ∑

d

i=0
2i = 2d+1 − 1

(exam review)

fun lazy_fib a b = Cons(a, fn () => Cons(b, fn () =>
 let val L = lazy_fib a b in zip_with (op +) L (tail L) end))
fun sieve s = delay (fn () => sieve’ (expose s))
and sieve’ (Empty) = Empty
 | sieve’ (Cons(p, s)) = Cons(p, sieve (filter (notDivides p) s))

signature ARITHMETIC =
sig
 type integer
 (* converts type int into the specified integer type *)
 val rep : int -> integer
 (* converts type integer to int *)
 val toInt : integer -> int
 (* allows you to view the integer as a string *)
 val display : integer -> string
 (* add two integers together *)
 val add : integer * integer -> integer
 (* multiply two integers together *)
 val mult : integer * integer -> integer
end

functor AlphaBeta (Settings : SETTINGS) : PLAYER =
:> is opaque, hides valueai

Seq.length : ’a Seq.seq -> int
Seq.empty : unit -> ’a Seq.seq
Seq.singleton : ’a -> ’a Seq.seq
Seq.append : ’a Seq.seq * ’a Seq.seq -> ’a Seq.seq
Seq.tabulate : (int -> ’a) -> int -> ’a Seq.seq
Seq.nth : ’a Seq.seq -> int -> ’a
Seq.filter : (’a -> bool) -> ’a Seq.seq -> ’a Seq.seq
Seq.map : (’a -> ’b) -> ’a Seq.seq -> ’b Seq.seq
Seq.reduce : ((’a * ’a) -> ’a) -> ’a -> ’a Seq.seq -> ’a
Seq.reduce1 : ((’a * ’a) -> ’a) -> ’a Seq.seq -> ’a
Seq.mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a Seq.seq -> ’b
Seq.toString : (’a -> string) -> ’a Seq.seq -> string
Seq.repeat : int -> ’a -> ’a Seq.seq
Seq.flatten : ’a Seq.seq Seq.seq -> ’a Seq.seq
Seq.flatten ss is equivalent to reduce append (empty ()) ss
Seq.zip : (’a Seq.seq * ’b Seq.seq) -> (’a * ’b) Seq.seq
Seq.split : ’a Seq.seq -> int -> ’a Seq.seq * ’a Seq.seq
Seq.take : ’a Seq.seq -> int -> ’a Seq.seq
Seq.drop : ’a Seq.seq -> int -> ’a Seq.seq
Seq.cons : ’a -> ’a Seq.seq -> ’a Seq.seq
Seq.update : ’a Seq.seq * int * ’a -> ’a Seq.seq
Seq.toList : ’a seq -> ’a list
Seq.fromList : ’a list -> ’a seq

length,nth map,tabulate

reduce
Lazy:
datatype ‘a stream = Stream of unit -> ‘a front
and ‘a front = Empty | Cons of ‘a * ‘a stream
delay : (unit -> ‘a front) -> ‘a stream
expose : ‘a stream -> ‘a front
fun filter p s = delay (fn () => filter’ p (expose s))
and filter’ p (Empty) = Empty
 | filter’ p Cons(x, xs) =
 if p(x) then Cons(x, filter p xs) else filter’ p (expose xs)
Imperative:
ref : ‘a -> ‘a ref
! : ‘a ref -> ‘a
(op :=) : ‘a ref * ‘a -> unit
fun reachable (g:graph) (x:int, y:int) : bool =
 let val visited = ref []
 fun dfs (n:int) : bool = (n = y) orelse
 let val V = !visited
 in (not (mem n V)) andalso (visited := n::V; exists dfs (G n)) end
 in dfs x end

Red/Black Tree Representation (RBT) Invariants:
 1. Tree is a binary search tree
 2. The children of a red node are black.
 3. Every path from the root to a leaf has the same number of black nodes, called the black height of the tree.
We can temporarily violate 2: red node children are black except maybe at root: the root and one of its children may both be red.

