
CS 15-859: Algorithms for Big Data Fall 2019

Lecture 6 — 2019-10-10
Prof. David Woodruff Scribe: Wan Shen Lim

These scribe notes cover slides 103 to 116 inclusive.

1 Hints from Office Hours

1.1 Question 1: Matrix Multiplication Runtime

How long does it take to multiply two matrices?

[
A
]

n×d
·
[
x
]

d×k

Naively, it requires O (ndk) operations, but we can also do it in O (k · nnz(A)) operations.

1.2 Question 3: Motivating Leverage Scores

Leverage scores tell us how “important” a row is. Consider the below matrix, n = 6 and d = 2.

A =

1 1
1 1
1 1
1 −1
1 1
1 1

Notice that the squared row norm is the same for every row. Therefore, if we sample by the squared
row norms, we are unlikely to pick the

[
1 −1

]
row. But A has rank 2, and if we miss that row,

the sampled matrix A′ will only have rank 1. How can we favor sampling that row? Consider
performing elementary row operations to get an orthonormal basis:

1 1
1 1
1 1
1 −1
1 1
1 1

→

2 0
2 0
2 0
0 −1
2 0
2 0

→

1√
n−1 0
1√
n−1 0
1√
n−1 0
0 1
1√
n−1 0
1√
n−1 0

→

writing leverage scores on the left

1
n−1

1√
n−1 0

1
n−1

1√
n−1 0

1
n−1

1√
n−1 0

1 0 1
1

n−1
1√
n−1 0

1
n−1

1√
n−1 0

Notice that the important row now has a huge leverage score!

1

2 `1-Regression

Note that `2-regression is sensitive to outliers as you are penalized by the square of the distance.

x
x

x x
This outlier pulls the line very far away.

This motivates `1-regression, in which we find the x∗minimizing |Ax− b|1 =
∑
i |bi − 〈Ai∗, x〉|1.

We can reformulate `1-regression as the following linear programming problem,

minimize (1, · · · , 1) · (α+ + α−)
subject to Ax+ α+ − α− = b

α+, α− ≥ 0

which can be solved in poly(nd) time by generic linear programming.

But poly(nd) is slow. We can sketch to go faster. Given An×d and b, this is where we’re going:

1. Compute a poly(d)-approximation to our `1-regression problem.
i.e. we will find x′ such that |Ax′ − b|1 ≤ poly(d) minx∈Rd |Ax− b|1

2. Compute a well-conditioned basis.

i.e. this basis keeps lengths within poly(d) of the original, |x|1
poly(d) ≤ |Ux|1 ≤ poly(d)|x|1

3. Sample rows from the well-conditioned basis and the residual of the poly(d) approximation.
i.e. we will prove the problem equivalence of minx∈Rd |Ax− b|1 = minx∈Rd |Ux− b′|1 where
b′ = b−Ax′. It turns out sampling poly(dε) rows proportional to their `1-norm is sufficient to
obtain a (1 + ε) approximation.

4. Now we only have poly(dε) constraints, and generic linear programming is efficient!

2

2.1 Recap

2.1.1 Well-Conditioned Basis

Intuition. Our goal: for any matrix An×d, you can find a U preserving |x|1 by up to a
√
d factor.

Recall that for `2-regression, we were given a matrix An×d and were able to find a matrix Un×d with
orthonormal columns such that A = UW and |Ux|2 = |x|2 for all x.

We want a similar result for `1-regression, i.e. given a matrix An×d, we want to find a matrix Un×d
such that A = UW and |Ux|1 ≈ |x|1 for all x. It turns out we can preserve up to

√
d.

Lowner-John. Previously, we defined |z|Q,1 = |Qz|1 and proved that it was a norm. We also
considered the |·|Q,1 unit ball as C =

{
z ∈ Rd : |z|Q,1 ≤ 1

}
. We showed that C is a convex set which

is symmetric about the origin. Pictured below is the `∞-ball in R2, i.e. a square.

E

√
dE

C

Note that an ellipsoid is defined by the solutions to the equation
zTFz = 1 where F is a positive definite matrix. Since F is
positive definite, there exists G such that F = GGT .

The Lowner-John theorem says that given C, we can find an ellip-
soid E such that E ⊆ C ⊆

√
dE where E =

{
z ∈ Rd : zTFz ≤ 1

}
,

C is sandwiched between ellipsoids E and
√
dE.

Equivalently,
√
zTFz ≤ |z|Q,1 ≤

√
d
√
zTFz for all z.

Finding our basis. We claim that U = QG−1 is a well-conditioned basis. Let z = G−1x. Then

1. |Ux|1 = |QG−1x|1 = |Qz|1 = |z|Q,1

2. zTFz =
((
xT
(
G−1)T) (GTG) (G−1x

))
= xTx = |x|22

Now recall that by the Lowner-John theorem, for all z we have that
√
zTFz ≤ |z|Q,1 ≤

√
d
√
zTFz

|x|2 ≤ |Ux|1 ≤
√
d|x|2 by substitution

A useful fact is that ∀y ∈ Rk, |y|2 ≤ |y|1 ≤
√
k|y|2. Using that fact, we obtain that

|x|1√
d
≤ |x|2 ≤ |Ux|1 ≤

√
d|x|2 ≤

√
d|x|1

and so we are done; we see that U preserves |x|1 up to a
√
d factor.

Note. Notice that we never talked about algorithms for computing the ellipsoid. It turns out that
there are algorithms for finding an ellipsoid E in time poly(nd) or even n · poly(d), but we won’t
cover them because our algorithm will be faster anyway.

3

2.1.2 Net for `1-Ball

Intuition. A γ-net is a set of points “covering” the unit ball’s surface so that no point is further
than γ away. Recall γ-nets with the `2-norm. In bounding the number of points needed for the net
construction, we only used the triangle inequality. Therefore the same argument holds for `1-norms.

We want to construct a γ-net for the unit `1-ball B =
{
x ∈ Rd : |x|1 = 1

}
. Recall the definition of

a γ-net: subset N is a γ-net if for all x ∈ B, there exists y ∈ N such that |x− y|1 ≤ γ.

Greedy algorithm is good enough. To construct N , a simple greedy algorithm suffices: while
there exists a point x ∈ B of distance larger than γ for every point in N , we include x in N .

Now consider drawing a `1-ball of radius γ
2 around every point in N . By the greedy construction,

every such ball is disjoint (otherwise we wouldn’t have picked the point). Moreover, every such
`1-ball is contained within a large `1-ball of radius 1 + γ

2 centered at 0d.

x
x

x

By triangle inequality, every point
is contained within a

(
1 + γ

2

)
-ball

Disjoint balls of radius γ2
around points in the net

Original `1-ball

x

x

x

x

x

Useful fact: stretching by α in a d-dimensional space increases volume by αd. Here, α = 1+ γ
2

γ
2

. In
particular, the ratio of the volume of d-dimensional polytopes of radius 1 + γ

2 compared with those

of radius γ
2 is (1+ γ

2)d

(γ2)d
≥ |N |. The last inequality follows because there can only be that many balls

of radius γ
2 .

Take (1+ γ
2)d

(γ2)d
points. In summary, we can create a γ-net by taking at most (1+ γ

2)d

(γ2)d
points.

4

2.1.3 Net for `1-Subspace

Intuition. We obtained a net for the ball, now we want to extend the net to cover the subspace.
In doing so, we will lose a factor of d, but in practice this doesn’t really matter as it just introduces
a log d factor somewhere..

Just multiply the net by the basis. Let A = UW where U is a well-conditioned basis, and
N be a γ

d -net for the unit `1-ball B. We set M = {Ux : x ∈ N}, and by the above net for `1-ball

argument we know that |M | ≤ (1+ γ
2)d

(γ2)d
.

But now we claim that for every x in B, there is already a y ∈M such that |Ux− y|1 ≤ γ.

1. Because N is a γ
d net, we know there exists x′ ∈ N such that |x− x′|1 ≤

γ
d .

2. Therefore |Ux− Ux′|1 ≤ |U |1|x− x′|1 by the triangle inequality.

3. Since U is a well-conditioned basis, we have that |x|1 ≤ |Ux|1 ≤ dx for all x. Note that this is
a loose bound. Now, x− x′ is just another point, so |U |1 ≤ d|x− x′|1.

4. But then d|x− x′|1 ≤ γ by the choice of x′ in the first step.

5. And so by picking y = Ux′, we get that |Ux− Ux′|1 ≤ γ as desired.

Take
(
d
γ

)O(d)
points. From above, we have that |M | ≤ (1+ γ

2)d

(γ2)d
(

2d
γ

)d(
2d
γ

)d =
(

2d
γ

)d
+dd

dd
≤
(
d
γ

)O(d)
.

2.2 Algorithm for `1-regression

So we’ve shown so far that we can γ-net a `1-subspace. This will be useful later. Let’s go back to
discussing our algorithm for solving `1-regression. There are four parts, given An×d and b,

1. Compute poly(d) approximation.
Find x′ such that |Ax′ − b|1 ≤ poly(d) minx |Ax− b|1.

2. Compute well-conditioned basis.
Find U with the same column-span as A such that for all x, |x|1

poly(d) ≤ |Ux|1 ≤ poly(d)|x|1.

3. Sample rows from U ◦ b′ where b′ = Ax′ − b.
Recall that in `2-regression, leverage score sampling of the matrix A ◦ b = [A, b] gave a good
approximation. In `1-regression, we do not have leverage scores (e.g. scores depend on basis).

However, let b′ = Ax′ − b and sample poly
(
d
ε

)
rows from U ◦ b′ = [U, b′] proportional to their

`1-norm. This provides a (1 + ε) approximation for `1-regression. We do not prove this, but
the proof is similar to the `2-regression case shown in previous weeks.

4. Solve `1-regression on the sample via linear programming and output that as your answer.
RecallA = UW for well-conditioned basis U . Let y = Wz, sinceW is invertible, miny |Uy − b′|1 =
minz |Az − b′|1 = minz |Az +Ax′ − b|1 = minx |Ax− b|1 by letting x = z + x′. So solving the
sketch solves the original problem, i.e. linear programming with just poly

(
d
ε

)
constraints!

5

2.3 Sketching Theorem

Theorem. There exists a probability space over matrices R(d log d)×n such that for any matrix An×d,
with probability at least 99

100 we have that

|Ax|1 ≤ |RAx|1 ≤ d log d · |Ax|1 for all x

Moreover, R is an embedding: it is linear, independent of A, and preserves the lengths of an infinite
number of vectors.

2.3.1 Why we care, part 1: computing a poly(d) approximation

If we had such an R, we could compute RA and Rb. By solving for x′ = arg minx |RAx−Rb|1, the
Sketching Theorem then tells us that x′ is a d log d approximation. Furthermore, we can solve for x′
efficiently since RA and Rb have d log d rows.

2.3.2 Why we care, part 2: computing a well-conditioned basis

If we had such an R, we could compute RA and compute W such that RAW is orthonormal in the
`2-sense. Then U = AW is a well-conditioned basis! To see this, recall that |·|1 ≤

√
d log d|·|2 and

note that

|AWx|1 ≤ |RAWx|1 since R a subspace embedding
≤
√
d log d|RAWx|2 going from `1 to `2

≤
√
d log d|x|2 since RAW has orthonormal columns

≤
√
d log d|x|1 since |·|2 is at most |·|1

and also

|AWx|1 ≥
|RAWx|1
d log d since R a subspace embedding

≥ |RAWx|2
d log d going from `1 to `2

≥ |x|2
d log d since RAW has orthonormal columns

≥ |x|1
d

3
2 log d

since |·|2 is at least 1√
d
|·|1

And so ultimately we have that

|x|1
d

3
2 log d

≤ |AWx|1 ≤
√
d log d|x|1

Which isn’t quite symmetrically bounded, but is well-conditioned enough for our purposes.

6

2.3.3 Bringing the Sketching Theorem to life

A dense matrix R whose entries are i.i.d. Cauchy random variables and scaled by 1
d log d works!

These scribe notes conclude before we fully see why this is the case. We’ll show that we’re not too
small, the next scribe notes will show that we’re not too large. But first, we go on a tangent about
the Cauchy distribution.

2.3.4 Cauchy Distribution

Fun fact. The Cauchy distribution is David’s favorite distribution.

The probability density function of the Cauchy distribution is given by

pdf(z) = 1
π (1 + z2) for z ∈ (−∞,∞)

The Cauchy distribution has fat tails, undefined expectation and infinite variance.

1. Fat-tailed: the pdf is 1
π(1+z2) , so as z →∞, the pdf → 1

z2 . Contrast this with the Gaussian

distribution’s behavior, e−
z2
2 which rapidly goes to 0!

2. Undefined expectation: note that
∫∞
−∞

z
π(1+z2)dz ≈

∫∞
−∞

1
zdz which diverges.

3. Infinite variance: note that
∫∞
−∞

z2

π(1+z2)dz =∞.

Recall that the sum of independent Gaussian random variables is Gaussian, i.e. X ∼ N(0, σ2
1), Y ∼

N(0, σ2
2), X ⊥ Y =⇒ X + Y ∼ N(0, σ2

1 + σ2
2). We call the Gaussian distribution 2-stable.

It turns out that the Cauchy distribution is 1-stable, meaning that if z1, z2, · · · , zn are i.i.d Cauchy,
then for a ∈ Rn, we have that

a1 · z1 + a2 · z2 + · · ·+ an · zn ∼ |a|1 · z where z is Cauchy

Moreover, Cauchy random variables can be generated as the ratio of two standard normal random
variables. This is useful for simulation.

7

2.3.5 Back to Sketching Theorem

We restate the Sketching Theorem.

Theorem. There exists a probability space over matrices R(d log d)×n such that for any matrix An×d,
with probability at least 99

100 we have that

|Ax|1 ≤ |RAx|1 ≤ d log d · |Ax|1 for all x

We claimed that R whose entries are i.i.d. Cauchy random variables scaled by 1
d log d works.

1-stability. To see this, note that

1. By 1-stability, for any row r of R we have that 〈r,Ax〉 = |Ax|1·Z
d log d for some Cauchy Z.

2. But thenRAx = 1
d log d (|Ax|1 · Z1, |Ax|1 · Z2, · · · , |Ax|1 · Zd log d) for i.i.d. Cauchy Z1, · · · , Zd log d.

3. Therefore |RAx|1 = 1
d log d |Ax|1

∑d log d
j=1 |Zj |1. Note that |Zj |1 is half-Cauchy.

Chernoff. Let I be the indicator function and Wi be indicator random variables as follows:
Wi = I(|Zi|1 ≥ 1

10). The 1
10 is arbitrary, all that matters is that we’re bigger than a constant with a

constant probability.

Then E[Wi] = Ω (1) = Pr[Wi = 1], so by linearity of expectation, for W =
∑
Wi we have that

E[W] = Ω (d log d). Now we can apply Chernoff bounds: Pr[W ≤ 1
2E[W]] ≤ e−Θ(E[W]) = e−Ω(d log d).

The tiny Chernoff bound allows us to union bound over the net!

Union-Bounding By combining the 1-stability and Chernoff sections above, we have that
∑d log d
j=1 |Zj |1 =

Ω (d log d) with probability 1− e−Ω(d log d).

We therefore obtain that |RAx|1 = 1
d log d |Ax|1

∑d log d
j=1 |Zj |1 = |Ax|1

Ω(d log d)
d log d with high probability.

This tells us that we are not too small, but recall that |Zj |1 is heavy-tailed – we could turn out to
be too large instead.

Scribe notes end here at slide 116 inclusive.

8

	Hints from Office Hours
	Question 1: Matrix Multiplication Runtime
	Question 3: Motivating Leverage Scores

	1-Regression
	Recap
	Well-Conditioned Basis
	Net for 1-Ball
	Net for 1-Subspace

	Algorithm for 1-regression
	Sketching Theorem
	Why we care, part 1: computing a `39`42`"613A``45`47`"603Apoly(d) approximation
	Why we care, part 2: computing a well-conditioned basis
	Bringing the Sketching Theorem to life
	Cauchy Distribution
	Back to Sketching Theorem

