

NOTES

Lecture 09/07 Introduction

Logistics
cs.cmu.edu/~ sand holm/es15-888F21/
Thomas Sandholm, Gabriele Farina
. 50% project, 40% homework, 10\% participation

- No textbook

Multi-step imperfect information games
Most similar to real world-incomplete information, sequential/simultaneous moves Heart of problem

I agent: expected utility maximizing strategy well-defined
Multi agent: best strategy depends on others
Terminology
Agent : player
Action/move: choice agent can make at any point in the game
Strategy s_{i}

- Strategy set S_{i} : Strategies available to agent i

Strategy profile $\left(s_{1}, s_{2}, \cdots, s_{\mid A 1}\right)$: one strategy for each agent
(though mature $\&$ states)

- Utility : $u_{i}=u_{i}\left(s_{1}, s_{2}, \ldots, S_{\mid A 1)}\right)$, can include nature for uncertainty

Agenthood
Agent wants to maximize expected utility
Utility function v_{i} of agent i maps outcomes to reals

- Utility functions are scale-invariant

Agent i picks max strategy $\Sigma_{\text {outcome }} p$ (outcomelstrategy) u_{i} (outcome)

- If $u_{i}^{\prime}=a v_{i}+b$ for $a>0$ then agent picks same strategy under u_{i}^{\prime} and u_{i}-note u_{i} must be finite
- Inter-agent utility comparison problematic

Game representation
Extensive/tree form
Matrix/normal/strategic form

Dominant strategy equilibrium

$$
S_{-i}=\text { other player's strategy }
$$

- Best response s_{i}^{*} : for all $s_{i}^{\prime}, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$
- Dominant strategy $s_{i}^{*}: s_{i}^{*}$ is a best response for all s_{-i}, ie, $\forall s_{-i} \forall s_{i}^{\prime} u_{i}\left(s_{i}^{*} s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Doesn't always exist Inferior strategies are dominated

- Dominant strategy equilibrium: strategy profile where each agent has picked dominant strategy - Doesn't always exist
- Requires no counter speculation

Prisoner's Dilemma

C		
C	3,3	0,5
	5,0	1,1

Dominant strategy is (D, D)

Lecture 09/07 cont.

Nash equilibrium
A strategy equilibrium is a Nash equilibrium if no player has an incentive to deviate from their strategy given that others do not deviate
For every agent $i, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{i}^{\prime}, i.e., for fixed $s_{-i} \forall s_{i}^{\prime} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$
Dominant \Rightarrow Nash, not vice versa
boxing $2,1 \leftarrow \substack{\text { ballet } \\ 0,0}$ Nash equilibria
ballet $\stackrel{\uparrow}{0,0} \longrightarrow \underset{1,2}{\frac{1}{2}}$ (boxing, boxing), (ballet, ballet)

- Criticisms

- Not necessarily unique

Refinements (strengthenings) of equilibrium

- Eliminate weakly dominated strategies
- Choose Nash w/ highest welfare
- Subgame perfection
- Focal points
- Mediation
- Communication
- Convention
- Learning
- Does not exist in all games $\begin{array}{lll}1,0 \\ 0,1<1,0\end{array}$

Existence of pure-strategy Nash equilibria

- Theorem

Any finite game where each action node is alone in its information set
is dominance solvable by backward induction (as long as ties are ruled out)
Proof by construction, multiplayer minimax

- Mixed-strategy Nash equilibria

The essence of being simultaneous is knowledge
Still can draw same tree, just Player 2 doesn't know which state they are in
Dashed line for information set

Existence and complexity of mixed strategy Nash equilibria
[Nash50] Every finite player, finite strategy game has at least one Nash equilibria if we admit mixed-strategy equilibria as well as pure
2 -player 0 -sum \rightarrow polytime w/ LP
2 -player games \rightarrow PPAD-complete (even with $0 / 1$ payoffs)
'NP-complete to find even approximately good Nash equilibria
-3-player games \rightarrow FIXP-complete

Lecture 09/07 cont.

2 -player 0 -sum games
Swappability: if (x, y) and (x^{\prime}, y^{\prime}) equilibria, so are (x^{\prime}, y) and (x, y^{\prime})

- No equilibrium selection problem

Equilibrium strategies form bounded convex polytope
Any convex combination of a player's equilibrium strategies is an equilibrium strategy
[Jon Neumann 1928] Minmax the.
Let $X \subset \mathbb{R}^{n}, Y \subset \mathbb{R}^{m}$ compact convex sets.
If $f: x \times y \rightarrow \mathbb{R}$ continuous concave-convex,
$f(\cdot, y)$ concave for fixed y
$f(x, 1)$ convex for fixed x
$f(x, 1)$ convex for fixed x
Then

$$
\max _{x \in X} \min _{y \in Y} f(x y)=\min _{y \in Y} \max _{x \in X} f(x y)
$$

Great for multi-step imperfect information games
Opponent can play non-equlibrium to cause our beliefs to be wrong, but not enough to raise EV
Solvable in polytime (size of game tree) using $\angle P$ - Game tree may be infeasibly huge, $10^{165} \mathrm{eg}$

Lecture 09/09

- Comparison

Simultaneous Games
Convex polytope
Multi-Biinearity of expected utility
Nash equi in 2-player 0 -sum is $\max _{x \in \Delta \Delta^{\infty 1}} \min _{y \in d^{m}} x^{\top} A y$
Low \# of vertices

Sequential Games

Convex polytope
Multi-Bilinearity of expected utility
Nash is now $\max _{x \in Q_{1},} \min _{y \in Q_{2}} x^{\top} A y$
combinatorial \# of vertices

Set of actions A
Strategy is probability distribution over A

$$
\begin{aligned}
& x=\left(\begin{array}{l}
x_{R} \\
x_{p} \\
x_{s}
\end{array}\right) \geq 0 \quad \text { where } \quad x_{R}+x_{p}+x_{s}=1 \\
& x_{1} \in \Delta^{|A|} \quad x_{1}=\left(x_{12}, x_{12}, x_{15}\right) \\
& x_{2} \in \Delta^{\mid A 1} \quad x_{2}=\left(x_{2 R}, x_{22}, x_{25}\right)
\end{aligned}
$$

Nash equi in 2-player 0 -sum simultaneous

- P_{1} commits to strategy $x \in \Delta^{|n|}$
$\cdot P_{2}$ plays $y^{*}=\operatorname{argmax}_{y} u_{2}(x, y)=\operatorname{argmax} x^{\top} A_{2} y$
- P_{1} can expect to receive utility $g(x)=-u_{2}\left(x, y^{*}\right)=y^{\min n} x^{\top} A, y^{*}$

Sequential Games
Decision nodes

- Observation nodes

囚

Behavioral strategy $(0.1,0.9 ; 0.5,0.5 ; \cdots, 1.0,0.0)$ probabilities on game tree branches

- Causes non-convex problems because objective contains products of own variables

Sequence form strategy $(0.1,0.9 ; 0.5 \times 0.1,0.5 \times 0.1 ; \cdots ; 1.0,0.0)$
Pre-multiply

Check goes from "sum to 1" to "sum to parent"

- x is a valid seq form strategy iff
(1) $x \geq 0$
(2) $\sum_{a \in A_{j}} \times\left[j_{a}\right]=x\left[p_{j}\right] \quad \forall j$
note p_{j} of a j with no
(3) $x[\phi]=1$ parent is denoted $P_{j}=\phi$
We denote valid seq form strategies as Q
Deterministic strategies
. $\Pi=Q \cap[0,1]^{n}$ where $n=1+\Sigma_{j}\left|A_{j}\right|$
- Lemma: $Q=$ convex hull of π
- Usually $|\pi|$ exp in size of tree

Inductive Q construction

$$
Q=Q_{1} \times Q_{2}
$$

$$
\begin{aligned}
Q & =\left\{\begin{array}{l}
\left(\lambda, 1-\lambda ; \lambda q_{1}(1-\lambda) q_{2}\right) \\
:(\lambda, 1-\lambda) \in \Delta^{2}, q_{1} \in Q_{1}, q_{2} \in Q_{2}
\end{array}\right\} \\
& =\text { convex hull of }\left\{\left(\begin{array}{c}
\frac{0}{0} \\
Q_{1} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
\frac{1}{0} \\
Q_{2}
\end{array}\right)\right\} \text { - }=\text { vertical ; }
\end{aligned}
$$

Only 3 operations

- Cartesian product
- Convex hull
- "Padding"

Lecture 09/14
Regret: look at game history, do we regret any action taken The player has learnt to play the game when looking back at the history of play,
they cannot think of any transformation $\phi: X \rightarrow X$ of their strategies
that when applied to the whole history of play would have given a strictly better utility to the player

Lecture 09/14 cont.

One t =one game, e.g., one poker hand
Φ-regret minimizer for set X
A device where at every time t
(1) NEXT STRATEGY: output the next strategy $\mathrm{x}^{t} \in X$
(2) OBSERVE UTLLITY $\left(\ell^{t}\right): \quad \ell^{t}: x \rightarrow \mathbb{R}$ linear function where x^{t} scores a utility of $\ell^{t}\left(x^{t}\right)$

- Quality metric: Φ-regret

$$
R_{\Phi}^{T}=\max _{\hat{\phi} \in \Phi} \sum_{t=1}^{T}\left[\ell^{t}(\hat{\phi}(x))-\ell^{t}\left(x^{t}\right)\right]
$$

Goal
Have guaranteed $R_{\Phi}^{T}=O(T)$ no matter the sequence of utility functions
. Note that Φ is a set of functions from X to X
Notable choices for Φ

- Φ is the set of all mappings $X \rightarrow X$
"Swap regret minimization"
- Converges to correlated equilibrium
in normal form and extensive form, general-sum, multiplayer
- $\Phi=\left\{\phi_{a \rightarrow b}: a, b \in X\right\}$ where $\phi_{a \rightarrow b}(x)=x$ if $x \neq a$, b if $x=a$
"Internal regret minimization"
Only one swap
$\Phi=$ constant functions from X to X
- $\Phi=\left\{\phi_{\hat{x}}: \hat{x} \in x\right\} \quad$ where $\phi_{\hat{x}}(x)=\hat{x} \quad \forall x \in X$
"External regret minimization"
In 2-player 0 -sum games (extensive form/normal form)
then external-regret-minimizing strategies
converge to Nash equilibrium (in averages)
$\uparrow_{i . e .,}$ maybe no strategy converges
but the average of all strategies will
In general-sum multiplayer games (extensive form/normal form)
then external-regret-minimizing strategies
converge to a coarse correlated equilibrium (in empirical frequency)
In general-sum multiplayer games mediator enforces a certain strategy
if all but one player stochastic
and last player uses regret minimizing strategy
then last player strategy converges to best response
- [Gordon, Greenwald, Narks 08]

WANT: Φ-regret minimizer for X, R_{Φ}
HAVE : Dan external regret minimizer for Φ, R (2) for any $\phi \in \Phi$ we have a fixed-point oracle, $X \ni x=\phi(x)$

Lecture 09/14 cont.
[Gordon 08] cont
Algorithm R_{Φ} at each time t
(1) NEXT STRATEGY $\phi^{+} \leftarrow R$ NEXT STRATEGY return $x^{t} \in \phi^{+}\left(x^{t}\right) \in X$
(2) OBSERVE VTILITY $\left(\ell^{t}\right) \quad \ell^{t}: X \rightarrow \mathbb{R}$ linear define $L^{t}: \phi \rightarrow \ell^{t}\left(\phi\left(x^{+}\right)\right) \quad L^{t}: \phi \rightarrow \mathbb{R}$ linear $R_{\text {observe utility }}\left(L^{t}\right)$
R_{Φ}^{\top} of $R_{\text {I }}$

$$
\begin{aligned}
R_{\Phi}^{T} & =\max _{\hat{\phi} \in \Phi} \sum_{i=1}^{T}\left[\ell^{t}\left(\hat{\phi}\left(x^{+}\right)\right)-\ell^{t}\left(x^{t}\right)\right] \\
& =\max _{\hat{\phi} \in \Phi} \sum_{i=1}^{T}\left[\ell^{t}\left(\hat{\phi}\left(x^{t}\right)\right)-\ell^{t}\left(\phi^{t}\left(x^{t}\right)\right)\right] \quad \text { via fixed point oracle } \\
& =\max _{\hat{\phi} \in \Phi} \sum_{i=1}^{T}\left[L^{t}(\hat{\phi})-L^{t}\left(\phi^{t}\right)\right]
\end{aligned}
$$

= external regret on the set of "strategies" Φ for R

Lecture 09/16
Bilinear saddle-point function

$$
\max _{x \in X} \min _{y \in Y} x^{\top} A y
$$

- Models
- Nash eq in 2-player 0 -sum games

0 -sum team games

- Optimal correlated equilibrium

Idea: self-play
Have: R_{x} external regret minimizer for set X
Ry external regret minimizer for set Y

"Saddle-point gap"
γ often called exploitability

Lecture 09/16 cont.

$$
\begin{aligned}
& \cdot R_{x}^{\top}=\max _{\hat{x} \in X} \sum_{t=1}^{\top}\left(A y^{t}\right)^{\top}\left(\hat{x}-x^{t}\right)=\max _{x \in X} \sum_{t=1}^{\top} \hat{X}^{\top} A_{y}{ }^{t}-\Sigma_{t=1}^{\top}\left(x^{t}\right)^{\top} A y^{t} \\
& \text { - } R_{y}^{\top}=\max _{\hat{y} \in y} \sum_{t=1}^{\top}\left(-A^{\top} x^{t}\right)\left(\hat{y}-y^{t}\right)=\max _{y \in y} \sum_{t=1}^{T}-\left(x^{t}\right)^{\top} A \hat{y}+\sum_{t=1}^{\top}\left(x^{t}\right)^{\top} A y^{t} \\
& R_{x}^{\top}+R_{y}^{\top}=\max _{x \in X} \sum_{t=1}^{\top} \hat{x}^{\top} A y^{t}+\max _{\hat{y} \in \mathcal{E}} \Sigma_{t=1}^{\top}-\left(x^{+}\right)^{\top} A \hat{y}
\end{aligned}
$$

$$
\begin{aligned}
& =T\left[\begin{array}{ll}
\max _{x \in X} \\
\hat{x} \in \hat{x}^{\top} A & \left.\left(\sum_{t=1}^{+} y^{t}\right)-\min _{\hat{y} \in Y}\left(\sum_{t=1}^{T}\left(x^{t}\right)\right)^{\top} A \hat{y}\right]
\end{array}\right. \\
& =\gamma(\bar{x}, \bar{y}) \text { where } \bar{x}=\frac{1}{T} \sum_{t=1}^{T} x^{t} \\
& \bar{y}=\frac{1}{T} \sum_{t=1}^{T} y^{t} \\
& \text { - } \Delta^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n}: x_{1}+\ldots+x_{n}=1\right\}
\end{aligned}
$$

- Goal: construct an external regret minimizer for Δ^{n}
- NExt STRATEGY output $x^{t} \in \Delta^{n}$
- OBSERVE UTILITY (e^{t}) $\quad e^{t}: \Delta^{n} \rightarrow \mathbb{R}$ linear

$$
R^{\top}=\max _{\hat{x} \in \Delta^{n}}\left\{\sum_{t=1}^{T}\left[\ell^{t}(\hat{x})-e^{t}\left(x^{t}\right)\right]\right\}=O(\sqrt{T})
$$

- Blackwell game

$$
(x, y, u, s)
$$

x, y are closed convex strategy spaces
$u: x \times y \rightarrow \mathbb{R}^{d}$ biaffine utility of the game for player 1
S is a subset of \mathbb{R}^{d}, closed and convex, target set
Blackwell dynamics
(1) Player 1 picks an action $x^{t} \in X$
(2) Player 2 picks an action $y^{t} \in y$
(3) Player 1 incurs payoff $u\left(x^{t}, y^{t}\right) \in \mathbb{R}^{d}$

Blackwell game goal $\frac{1}{T} \sum_{t=1}^{T} u\left(x^{t}, y^{t}\right) \rightarrow S$

$$
\min _{\hat{s} \in S}\left\|\frac{1}{T} \sum u\left(x^{t}, y^{t}\right)-\hat{s}\right\|_{2} \rightarrow 0 \text { as } T \rightarrow \infty
$$

$$
\begin{aligned}
& \Gamma:=\left(\begin{array}{l}
x \\
\left.\Delta^{n}, \mathbb{R}^{n}, u, \mathbb{R}_{s_{0}}^{n}\right) \\
\downarrow \\
\downarrow
\end{array}\right) \\
& u\left(x^{t}, l^{t}\right):=l^{t}-\left\langle l^{t}, x^{t}\right\rangle, \underline{1} \in \mathbb{R}^{n} \\
& R^{\top}=\max _{\hat{x} \in \Delta^{n}} \sum_{t=1}^{\top}\left\langle l^{t}, \hat{x}\right\rangle-\sum_{t=1}^{\top}\left\langle l^{t}, x^{t}\right\rangle
\end{aligned}
$$

Lemma $\underbrace{\frac{R^{T}}{T}}_{\text {distance of } \frac{1}{T} \sum u\left(x^{t}, \ell^{t}\right) \text { from } S} \leq \underbrace{}_{\substack{\min _{s} \in \mathbb{R}_{\leq 0}^{n}} \hat{s}-\frac{1}{T} \sum_{t=1}^{\top} u\left(x^{t}, \ell^{t}\right) \|_{2}}$

Lecture 09/16 cont.
$H \leq \mathbb{R}^{d}$ halfspace
$H=\left\{h \in \mathbb{R}^{d}: a^{\top} h \leq b\right\}$ for some $a \in \mathbb{R}^{d} b \in \mathbb{R}$
Forceable halfspace
H is forceable if $\exists x^{*} \in X$ a forcing action such that $\forall y \in Y \quad u\left(x^{*}, y\right) \in H$

Thy by Blackwell
Blackwell goal can be obtained if every halfspace $H \geq S$ is forceable.
At every t, Player 1 plays like this:
(1) Compute $\phi^{t}=\frac{1}{t-1} \sum_{i=1}^{t-1} u\left(x^{i}, y^{i}\right)$
(2) Project ϕ^{t} onto S, call the projection ψ^{t}
(3) If $\phi^{t} \in S$, equivalently $\psi^{t}=\phi^{t}$, then play any $X^{t} \in X$
(4) Else consider the halfspace H^{*} tangent to S at ψ^{t} and contains S, then play any forcing action for H^{*}
(5) Observe y^{t}, incur $u\left(x^{t}, y^{t}\right)$, and repeat.

get your average
in the set

- Proof sketch

Use alg construction
to show ≤ 0, so

$$
\begin{aligned}
& \alpha^{t}=(t-1)^{2} \operatorname{dis} t\left(\phi^{t}, S\right)^{2} \\
& \alpha^{t+1} \leqslant \alpha^{t}+0(1) \Rightarrow \alpha^{t}=O(t)
\end{aligned} \underbrace{\theta^{2}}_{O(1)}
$$ term can be ignored

$$
\begin{aligned}
& \alpha^{t+1} \leq \alpha^{t}+o(1) \Rightarrow \alpha^{t}=\alpha(t) \\
& o(t)=(t-1)^{2} \operatorname{dist}\left(\phi^{t}, S\right)^{2} \\
& \Rightarrow \operatorname{dist}\left(\phi^{t}, S\right)=0(\sqrt{\sqrt{t}})
\end{aligned}
$$

Blackwell for Γ game earlier
(1) $\phi^{t}=\frac{1}{t-1} \Sigma_{t=1}^{t-1} u\left(x^{\tau}, y^{\tau}\right)=\frac{1}{t-1} \sum_{t=1}^{t-1} l^{\tau}-\left\langle l^{\tau}, x^{\top}\right\rangle \cdot 1$
(2) $S=\mathbb{R}_{s 0}^{n}, \psi^{t}=\left[\phi^{t}\right]^{-}$
(3) If $\phi^{t} \in S$ do anything
(4) If $\psi^{t} \neq \phi^{t}$

$$
\begin{aligned}
& H^{t}=\left\{z \in \mathbb{R}^{n}:\right.\left.\left(\phi^{t}-\psi^{t}\right)^{\top} z \leq 0\right\} \\
&\left(\phi^{t}-\left[\phi^{t}\right]\right]^{\top} z \leq 0 \\
&\left(\left[\phi^{t}\right]^{\top}\right)^{\top} z \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& \phi^{t+1}=\frac{t-1}{t} \phi^{t}+\frac{1}{t} u\left(x^{t}, y^{t}\right) \\
& \operatorname{dis}\left(\phi^{t+1}, S\right)^{2} \leq\left\|\phi^{t+1}-\psi^{t}\right\|_{2}^{2} \\
& =\left\|\frac{t-1}{\tau} \phi^{t}+\frac{1}{t} u^{2}\left(x^{t} \psi^{t}\right)-\psi^{t}\right\|_{2}^{2} \text {, note } \psi^{t}=\frac{t-1}{t} \psi^{t}+\frac{1}{t} \psi^{t} \\
& =\left\|\frac{t-1}{t}\left(\phi^{t}-\psi^{t}\right)+\frac{1}{t}\left(u\left(x^{t}, y^{t}\right)-\psi^{t}\right)\right\|_{2}^{2} \\
& =\left(\frac{(t-1}{t}\right)^{2} d^{2}+\left(\phi^{t}, s\right)^{2}+\frac{1}{t^{2}} \| u\left(x^{t}, y^{t}\right)-\psi^{t} n_{2}^{2}+\frac{2}{t^{2}}(t-1) \cdot \underbrace{\left\langle\phi^{t}-\psi^{t}, u\left(x^{t}, y^{t}\right)-\psi^{t}\right\rangle}
\end{aligned}
$$

Lecture 09/16 cont.
Is it true that $\forall \phi^{t}$, there exists x^{*} st $\forall \ell \in \mathbb{R}^{n}$

$$
\begin{aligned}
& u\left(x^{*}, l\right) \in H^{+} \\
& \Leftrightarrow\left(\left[\phi^{+}\right]^{+}\right]^{\top}\left(l-<l, x^{*} * 1\right) \leq 0 \\
& l^{\top}\left[\phi^{t}\right]^{+}-\left(l^{\top} x^{*}\right)\left(\left[\phi^{+}\right]^{+}\right)^{\top} 1 \leq 0 \\
& l^{\top} \frac{\left[\phi^{+}+{ }^{+}\right.}{\left[\phi^{+}\right]^{+} \cdot 1}-l^{\top} x^{*} \leq 0 \\
& x^{*}=\frac{\left[\phi^{t}\right]^{+}}{\left[\phi^{*}\right]^{+} \cdot 1}=\Delta^{n}
\end{aligned}
$$

Lecture 09/21

- Algorithm
- At every t,
(1) $\phi^{t} \leftarrow \frac{1}{t-1} \sum_{\tau=1}^{t-1} u\left(x^{\tau}, \ell^{\tau}\right)$
(2) $\psi^{t} \leftarrow\left[\phi^{t}\right]^{-}$
(3) If $\psi^{t} \neq \phi^{t}$ then play $\frac{\left[\phi^{t}\right]^{+}}{T^{1}\left[\phi^{+}\right]^{+}} \in \Delta^{n}$
else play any point in Δ^{n}
(4) Observe ℓ^{t} and iterate

$$
r^{t}=(t-1) \phi^{t}
$$

Regret Matching

$$
r^{\circ}<0, x^{0}<\frac{1}{n} \in \Delta^{n}
$$

function NEXT STRATEGY()

$$
\theta^{t}<\left[r^{+}\right]^{+}
$$

if $\theta^{t} \neq 0$ then output $\frac{\rho^{t}}{T^{t} \theta^{t}} \in \Delta^{n}$
else output $\frac{1}{n} 1 \mathrm{E}^{n}$

- function OBSERVE VTILTTY (l^{t})

$$
r^{t+1} \leftarrow r^{t}+l^{t}-\left\langle Q^{t}, x^{t}\right\rangle 1
$$

In practice, faster to $[\cdot]^{+}$the updates
-Regret circuit for Cartesian Product

- Setting

Sets X and Y
Regret minimizes R_{x}, R_{y}
-Goal
Regret minimizer for $X \times Y=\{(x, y): x \in X, y \in Y\}$
function NEXT STRATEGY
$x^{t} \leftarrow R_{x}$. Next Strategy
-function OBSERVE VTILITY $\left(e^{t}\right)$ where $l^{t}=\left(\ell_{x}^{t}, t_{y}^{t}\right)$
$y^{\mathrm{t}} \in \mathrm{R}_{\mathrm{y}}$. NEXT STRATEGY
R_{x} observe vitality $\left(l_{x}^{t}\right)$
output $\left(x^{t}, y^{t}\right)$

Lecture 09/21 cont.

$$
\begin{aligned}
& R^{\top}=\max _{(\hat{x}, \hat{y})} \sum_{t=1}^{\top}\left(l_{x}^{t}, l_{y}^{t}\right)^{\top}(\hat{x}, \hat{y})-\left(l_{x}^{t}, l_{y}^{t}\right)^{\top}\left(x^{t}, y^{t}\right) \\
& =\max _{(\hat{x}, \hat{y})} \sum_{t=1}^{T} l_{x}^{t^{\top}} \hat{x}+l_{y}^{t^{\top}} \hat{y}-l_{x}^{+^{\top}} x^{t}-l_{y}^{t^{\top}} y^{t} \\
& =\max _{(\hat{x}, \hat{y})}\left\{\left(\sum_{t=1}^{T} l_{x}^{+} \hat{x}-l_{x}^{t^{\top}} x^{t}\right)+\left(\sum_{t=1}^{T} l_{y}^{t^{\top}} \hat{y}-l_{y}^{t^{\top}} y^{t}\right)\right\} \\
& =\left(\max _{\hat{x} \in x} \sum_{t=1}^{\top} l_{x}^{t^{\top}} \hat{x}-l_{x}^{t^{\top}} x^{t}\right)+\left(\max _{\hat{y} E y} \sum_{t=1}^{T} l_{y}^{t^{\top}} \hat{y}-l_{y}^{t^{\top}} y^{t}\right) \\
& =R_{x}^{\top}+R_{y}^{\top}
\end{aligned}
$$

Regret circuit for Convex Hulls
Setting
Sets X and Y
Regret minimizes R_{x}, R_{y}
-Goal
Regret minimizer for $\operatorname{co}(X, Y)=\left\{\lambda_{1} x+\lambda_{2} y ; x \in X, y \in Y, \lambda \in \Delta^{2}\right\} \in \mathbb{R}^{n}$

- Need
- Any regret minimizer R_{Δ} for Δ
function NEXT STRATEGY

$$
\begin{aligned}
& \mathrm{x}^{\mathrm{t}} \leftarrow R_{x} \cdot \text { NEXT STRATEGY } \\
& \mathrm{y}^{\mathrm{t}} \leftarrow R_{y} \text {. NEXT STRATEGY } \\
& \lambda^{t} \leftarrow R_{\Delta} \cdot \text { NEXT STRATEGY } \\
& \text { Output } \lambda_{1}^{t} \mathrm{x}^{t}+\lambda_{2}^{t} y^{t}
\end{aligned}
$$

-function OBSERVE VTILITY $\left(e^{t}\right)$ where $l^{t}=\left(\ell_{x}^{t}, \ell_{y}^{t}\right)$
R_{x} observe vitality (ℓ^{t})
Ry. observe vtuity (ℓ^{t})
R_{Δ}. observe utility $\left(l_{\Delta}^{t}\right)$
where $l_{\Delta}^{t}:\left(\lambda_{1}, \lambda_{2}\right) \rightarrow \lambda_{1} \cdot l^{t}\left(x^{t}\right)+\lambda_{2} \cdot l^{t}\left(y^{t}\right)$

$$
\begin{aligned}
& \left.\left.-R^{\top}=\max _{z \in(x) y}^{\max }\right) \Sigma_{t=1}^{\top}\left[e^{\top} \hat{z}-\ell^{\top}\left(\lambda_{1}^{\top} x^{t}+\lambda_{2}^{t}\right)^{t}\right)^{t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =R_{\Delta}^{\top}+\max \left\{\left\langle R_{x}^{\top}, R_{Y}^{\top}\right\}\right.
\end{aligned}
$$

Lecture 09/21 cont.
Recall inductive Q construction
Can essentially ignore padding in convex hull
CR
Need R_{j} for every decision point j, a regret minimizer for $\Delta^{\left|A_{j}\right|}$

- in NEXT STRATEGY()
$b^{t} \in$ Construct behavioral strategy that picks actions A_{j} at each j with probability R_{j}. NEXT STRATEGY() output sequence form representation x^{t} of b^{t}
in OBSERVE VTILITY (ℓ^{t})
At each j, construct the $\left|A_{j}\right|$ dimensional utility vector

$$
l_{j}^{t}[a]=l^{t}[j a]+\sum_{j^{\prime} a^{\prime} \geq j a} x^{t}\left[j^{\prime} a^{\prime}\right] \cdot \ell^{t}\left[j^{\prime} a^{\prime}\right]
$$

Lecture 09/23 Speeding up CFR

- This lecture covers SOTA ~2019

Convergence of CFR
Cumulative $O(\sqrt{T})$

- Average $O\left(\frac{\sqrt{T}}{T}\right)=O\left(\frac{1}{\sqrt{T}}\right)$
- Technique: Alternation
- Normal CFR: update agent 1 and agent 2 based on opponent strategy in $t-1$

Now: update agent I based on agent 2 in $t-1$,
update agent 2 based on agent 1 in t
Converges faster in practice, still provable $O(\sqrt{T})$ cumulative regret [Burch $\tau_{A 1 R 19]}$
Motivation: update each agent based on newest strategy of each opponent

- Technique: Re-weighting
- [Brown, Sand holm, AAAII9]
- Motivation
- (FRt was fastest, but has limitations

- Causes CFRT to take 471407 iterations to learn to pick middle with 100% probability

Solution

- Discount early bad iterations' regrets and average strategy by weighting iteration t by t
- Called Linear CFR
- Takes 970 iterations to learn to pick middle action
- Worst case convergence bound only increases by $2 / \sqrt{3}$

Lecture 09/23 cont.

Theorem. For any sequence of nondecreasing weights,
(1) Suppose T iterations of RAt in 2 -player 0 -sum games
(2) Then weighted avg strategy profile, where iteration t is weighted proportional to $w_{t}>0$ and $w_{i} \leq w_{j}$ for all $i<j$, is a

$$
\left.\frac{W_{T}}{\sum_{t=1}^{\top} w_{t}} \Delta|I| \sqrt{A \mid} \right\rvert\, \sqrt{T} \text {-Nash equilibrium }
$$

- At least for now, smart reweighting doesn't seem to pay off
- Too much to store
- Time could be spent on just doing more CFR
- Linear CFR+

In theory, yes

- In practice, does very poorly

Discounted (FR, a less aggressive combination (DCFR)
On each iteration,

- multiply positive regrets by $\frac{t^{\alpha}}{t^{a}+1}$
multiply negative regrets by $\frac{t^{t^{a}+1}}{t^{p+1}}$

Weight contributions to average strategy by $\left(\frac{t}{t+1}\right)^{\gamma}$
For $\alpha=1,5, \beta=0, \gamma=2$, consistently outperforms (FR+ in practice

- $\beta=\infty=$ no discounting = vanilla CFR
$-\beta=1=$ linear CFR
$\cdot \beta=-\infty=$ CR +
-Worst case convergence bound only a small constant worse than CFR
CFRt also works better when assigning iteration t a weight of t^{2} than t empirically The relative ranking is mostly the same across games for the empirical graph shown
- Monte Carlo Linear CFR
- CFRT, DCFR do poorly with sampling
- Linear CFR does quite well with sampling
- DCFR $>$ CF + , was SOTA in large imperfect information games
- Linear $T O D O$ COPY
- Technique: Dynamic Pruning
- Why not permanent pruning like $\alpha \beta$ pruning in perfect information games?
- Game tree can change!
[Lanctot ICMLOQ] Partial pruning
- If opponent's probability of reaching there is 0 , safe to prune

Lecture 09/23 cont.
[Brown,Sandham NeurlPsis] Interval Regret Based Pruning
Also prune paths that agent reaches with 0 probability
Must be temporary!
Action $a \in A(1)$ such that $\sigma^{t}(1, a)=0$
'Known a will not be played with positive probability until far future iteration t^{\prime} $\ln R M, R^{t}(1, a) \ll 0$
To find t^{\prime}, project conservatively or check dynamically
So we can procrastinate in deciding what happens before a on iterations $t, t+1, \ldots, t^{\prime}-1$ Upon reaching t^{\prime}, instead of t^{\prime} - t iterations over $D(1, a)$, just one iteration playing the average of the opponent's strategies in those missed iterations, and declare we played that strategy on all those missed iterations

- All other players can partial prune a out

Total Regret Based Pruning
Check slides for the rest

$$
\begin{aligned}
& \text { strategy }=\left(x_{1}, x_{2} ; x_{3}, x_{4} 1 \ldots\right) \\
& \text { space } \rightarrow \text { quantization? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Purification } \\
& \text { poler combctition } \\
& \text { Job limit } \\
& \text { dropesing } \\
& \text { tartaniam } 8 \text { (baby }
\end{aligned}
$$

Lecture 09/28

Recall Regret Minimizer from before

- Next StRATEGY outputs $x^{+} \in X \leq \mathbb{R}^{n}$
- ObSERVE VTLLTY($\left.\ell^{t}\right) \quad \ell^{t} \in \mathbb{R}^{n}$
$R^{\top}=\max _{\hat{X} \in X} \Sigma_{t=1}^{\top}\left(l^{t}\right)^{\top} \hat{x}-\left(l^{t}\right)^{\top} x^{t}$
- Goal: $R^{\top}=o(T)$

Predictive Regret Minimizer

- Next STRATEGY $\left(m^{t} \in \mathbb{R}^{n}\right)$ outputs x^{t} taking into account a prediction m^{t} for the next utility ℓ^{t} OBSERVE UTLLTY $\left(\ell^{t}\right) \quad \ell^{t} \in \mathbb{R}^{n}$ $R^{\top}=\max _{\hat{x} \in X} \sum_{t=1}^{\top}\left(l^{t}\right)^{\top} \hat{x}-\left(l^{t}\right)^{\top} x^{t}$

RVU bound [syrgkanis 15]
Regret bounded by variations in utility
$R^{\top} \leq \alpha+\beta \Sigma_{t=1}^{\top}\left\|\ell^{t}-m^{t}\right\|_{*}^{2}-\gamma \sum_{t=2}^{\top}\left\|x^{t}-x^{t-1}\right\|^{2}$

$$
\|v\|_{x}=\text { dual norm }=\max _{x} \frac{\left\|v_{x} x\right\|}{\|x\|}
$$

$\|\cdot\|_{1} \rightarrow\|\cdot\|_{1 \pi}=\| \|_{\infty}$
$\|\cdot\|_{2} \rightarrow\|\cdot\|_{2 \star}=\|\cdot\|_{2}$
$\|\cdot\|_{p} \rightarrow\| \|_{p x}=\|\cdot\|_{q} \quad$ where $\quad \frac{1}{q}+\frac{1}{p}=1$
Accelerated self play

- Setting: $\max _{x \in X} \min _{y \in f} x^{\top} A_{y}$

- R_{x} and R_{y} satisfy RVU bound
- $\bar{x}=\frac{1}{T} \sum_{t=1}^{T} x^{t}$
- $\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y^{t}$
- $m_{x}^{t}=A y^{t-1}$
- $m_{y}^{t}=-A^{\top} x^{t-1}$
- Fact. $\gamma\left(x^{\top}, y^{\top}\right) \leq \frac{1}{T}\left(R_{x}^{\top}+R_{y}^{\top}\right)$
$\mathrm{T}_{\text {saddle }}$ point gap
$\gamma\left(\bar{x}^{\top}, \bar{y}^{\top}\right) \leq \frac{1}{T}\left(R_{x}^{\top}+R_{y}^{\top}\right)$
$\leq \frac{1}{T}\left(2 \alpha+\beta \Sigma_{t=1}^{\top}\left\|\ell_{x}^{t}-m_{x}^{t}\right\|_{\pi}^{2}-\gamma \Sigma_{t=2}^{\top}\left\|x^{t}-x^{t-1}\right\|^{2}\right.$ $\left.+\beta \sum_{t=1}^{T}\left\|l_{y}^{t}-m_{y}^{t}\right\|_{x}^{2}-\gamma \sum_{t=2 l}^{T}\left\|y^{t}-y^{t-1}\right\|^{2}\right)$
$\leq \frac{1}{T}\left(2 \alpha+\beta \sum_{t=1}^{\top}\left\|A^{\top}\left(x^{t} x^{t} x^{t-1}\right)\right\|_{x}^{2}-\gamma \sum_{t=2}^{\top}\left\|x^{t}-x^{t-1}\right\|^{2}\right.$ note $\|M z\|_{*} \leq\|M\|_{o p}\|z\|$ $\left.+\beta \sum_{t=1}^{T}\left\|A\left(y^{t}-y^{t+1}\right)\right\|_{x}^{2}-\gamma \sum_{t=2}^{\top}\left\|y^{t}-y^{t-1}\right\|^{2}\right)$
$\leq \frac{1}{T}\left[2 a+\beta\|A\|_{\rho \rho}^{2} \sum_{t=2}^{T}\left\|x^{t}-x^{t-1}\right\|^{2}-\gamma \sum_{t=2}^{T}\left\|x^{t}-x^{t-1}\right\|^{2}\right.$ $+\beta\| \|\left\|_{o p}^{2} \sum_{t=2}^{T}\right\| y^{t}-y^{t-1}\left\|^{2}-\gamma \sum_{t=2}^{T}\right\| y^{t}-y^{t-1} \|^{2}$ $\left.+\beta\|A\|_{\rho p}^{2}\left\|y^{\prime}\right\|^{2}+\beta\| \|\left\|_{0 p}^{2}\right\| x \|^{2}\right)$
$\leq \frac{O(1)}{T}$

Predictive FTRL follow the regularized leader $x \in \mathbb{R}^{n}$ convex, compact set

- $\varphi: x \rightarrow \mathbb{R}$ 1-strongly convex
. $\eta>0$ stepsize
- in $\operatorname{INITIALILE():~} L^{0} \leftarrow 0 \in \mathbb{R}^{n}$ where at every time $T, L^{T}=\Sigma_{t=1}^{\top} l^{t}$
in NEXT STRATEGY(m^{t}):
return $\operatorname{argmax}_{\hat{x} \in x}\left(L^{t-1}+m^{t}\right) \hat{x}-\frac{1}{\eta} \varphi(\hat{x})$
- in OBSERVE VTILITY (ℓ^{t}): $L^{t} \leftarrow L^{t-1}+\ell^{t}$

Predictive OMD online mirror descent
$X \subseteq \mathbb{R}^{n}$ convex and compact set
$\varphi: X \rightarrow \mathbb{R}$ 1-strongly convex
. $\eta>0$ stepsize

- In $^{\prime} \operatorname{INITIALIZE():} z^{0} \leftarrow$ any $\hat{z} \in X: \nabla \varphi(\hat{z})=0$
- in NEXT STRATEGY(m^{t}):
return $\operatorname{argmax}_{\hat{x} \in x}\left(\left(m^{t}\right)^{\top} \hat{x}-\frac{1}{\eta} D_{\varphi}\left(\hat{x} \| z^{t-1}\right)\right)$
in ObSERVE VTLLITY ($\left(\ell^{t}\right)$:

$$
z^{t} \leftarrow \operatorname{argmax}_{\hat{z} \in x}\left(\left(\ell^{t}\right)^{\top} \hat{z}-\frac{1}{\eta} D_{\varphi}\left(\hat{z} \| z^{t-1}\right)\right)
$$

$$
\begin{aligned}
& \cdot D_{\varphi}(a \| c)=\varphi(a)-\varphi(c)-\langle\nabla \varphi(c), a-c\rangle \\
& \text { If } \varphi=\frac{1}{2}\|\cdot\|_{2}^{2} \\
& \text { then } \begin{aligned}
D \varphi(a \| c) & =\frac{1}{2}\|a\|_{2}^{2}-\frac{1}{2}\|c\|_{2}^{2}-c^{\top}(a-c) \\
& =\frac{1}{2}\|a\|_{2}^{2}-\frac{1}{2}\|c\|_{2}^{2}-c^{\top} A+c^{\top} c \\
& =\frac{1}{2}\|a\|_{2}^{2}+\frac{1}{2}\|c\|_{2}^{2}-c^{\top} A \\
& =\frac{1}{2}\|c-a\|_{2}^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{argmax}_{\hat{x} \in x} \quad g^{\top} \hat{x}-\frac{1}{\eta} D_{\varphi}(\hat{x} \| c) \\
& =\operatorname{argmax}_{\hat{x} \in x} g^{\top} \hat{x}^{-} \frac{1}{2}\|\hat{x}-c\|_{2}^{2} \\
& =\operatorname{argmax}_{\hat{x} \in x} \eta_{g^{\top}} \hat{x}-\frac{1}{2}\|\hat{x}\|_{2}^{2}+c^{\top} \hat{x} \\
& =\operatorname{argmax}_{\hat{x} \in x}-\frac{1}{2}\|\hat{x}-(\eta g+c)\|_{2}^{2} \\
& =\operatorname{Proj}_{x}\left(\eta_{g}+c\right)
\end{aligned}
$$

-Thy. Let Ω be the range of φ over X

$$
\Omega=\max _{x, x^{\prime} \in x} \varphi(x)-\varphi\left(x^{\prime}\right)
$$

Then at all times T and for all $\eta>0$

$$
R^{\top} \leq \frac{\Omega}{\eta}+\eta \sum_{t=1}^{T}\left\|l^{t}-m^{t}\right\|_{*}^{2}-\frac{1}{c \eta} \sum_{t=2}^{\top}\left\|x^{t}-x^{t-1}\right\|^{2}
$$

where $c= \begin{cases}4 & \text { for FTRL } \\ 8 \text { for OMD }\end{cases}$
and $\|\cdot\|$ is the norm for which φ is I-strongly convex

$$
\begin{aligned}
& \text { For FTRL, } \operatorname{argmax}_{\hat{x} \in X} \quad a^{\top} \hat{x}-\frac{1}{\eta} \varphi(\hat{x}) \quad a^{\top} \hat{x}-\frac{1}{\eta} D_{\varphi}(\hat{x} \| c) \\
& \text { For } O M D, \quad \operatorname{argmax}_{\hat{x} \max _{\hat{x} \in X}} \quad \eta_{a^{\top} \hat{x}}-\varphi(\hat{x})=\nabla_{\varphi^{*}}\left(\eta_{a}\right) \\
& \begin{array}{l}
\operatorname{argmax}_{\hat{x} \in X} \quad a^{\top} \hat{x}-\frac{1}{\eta} D_{\varphi} D(\hat{x} \| c) \\
=\operatorname{argmax}_{\hat{x} \in X} \quad a^{\top}-\frac{1}{\eta} \varphi(\hat{x})+\frac{1}{\eta} \varphi(c)+\frac{1}{\eta}(\nabla \varphi(c))^{\top}(\hat{x}-c) \\
=\operatorname{argmax}_{\hat{x} \in X} a^{\top} \hat{x}-\frac{1}{\eta} \varphi(\hat{x})+\frac{1}{\eta}(\nabla \varphi(c))^{\top} \hat{x} \\
=\operatorname{argmax}_{\hat{x} \in X}\left(a+\frac{1}{\eta}(\nabla \varphi(c))^{\top}\right) \hat{x}-\frac{1}{\eta} \varphi(\hat{x}) \\
=\nabla_{\varphi^{*}}\left(a+\frac{1}{\eta}(\nabla \varphi(c))\right)
\end{array}
\end{aligned}
$$

- Def. $\varphi: x \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is "nice"
if the following quantities can be computed in $O(n)$ time
(1) $\nabla \varphi(c) \quad \forall c \in X$
(2) $\nabla_{\varphi^{*}}(a)=\operatorname{argmax}_{\hat{x} \in X} a^{\top} x-\varphi(\hat{x})$

For $x \in \Delta^{n}$ a "nice" regularizes is, among others,

$$
\varphi_{\partial}(x)=\sum x_{i} \log x_{i}
$$

$$
\frac{\partial}{\partial x_{i}} \varphi(x)=1+\log x_{i}
$$

(2): $\operatorname{argmax}_{x \in \mathbb{R}^{n}} \sum_{i=1}^{n} a_{i} x_{i}-\sum_{i=1}^{n} x_{i} \log x_{i}, \sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0 \forall i$

By Lagrange multiplies theorem,

$$
L(x, \alpha)=\sum \alpha_{i} x_{i}-\sum x_{i} \log x_{i}-\alpha\left(\sum x_{i}-1\right)
$$

$\nabla_{x} L(x, \alpha)=0$ when

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} L\left(x_{i}, \alpha\right) & =a_{i}-1-\log x_{i}-\alpha=0 \\
& \Rightarrow \log x_{i}=a_{i}-1-\alpha \\
& \Rightarrow x_{i}=\exp \left(a_{i}-1-\alpha\right) \\
& \Rightarrow x_{i}^{*}=\frac{\operatorname{expep} a_{i}}{\operatorname{eep}\left(a_{i}\right)}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
\nabla_{\varphi^{*}}(a) & =\operatorname{softmax}^{(a)} \\
& =\left(\frac{\exp \left(a_{i}\right)}{\sum \exp \left(a_{i}\right)}\right)_{i}
\end{aligned}
$$

What about $\varphi(x)=\frac{1}{2}\|x\|_{2}^{2}$?

$$
\nabla \varphi(x)=x
$$

But then $\operatorname{argmax}_{\hat{x} \in \Delta^{n}} a^{\top} x-\frac{1}{2}\|x\|_{2}^{2}$ is "hard" to solve
-What about sequence form polytopes

$$
\varphi(x)=\sum_{j \in J} \sum_{a \in A_{j}} w_{j a} \cdot x[j a] \log x[j a]
$$

where $\omega_{j a}$'s are chosen recursively according to

$$
\begin{aligned}
& w_{j a}=\gamma_{j}-\sum_{p_{j} \in J j=j a} \gamma_{j^{\prime}} \\
& \gamma_{j}=1+\max _{a \in A_{j}}\left\{\sum_{\substack{j \in J \\
p_{j}=j a}}\right\} \geq 1
\end{aligned}
$$

$\varphi(x)$ is nice and 1-strongly convex writ l_{2}

Lecture 09/30 cont

Predictive Blackwell game
Before X plays, they receive prediction $v^{t} \in \mathbb{R}^{d}$ of the next utility Consider only S cone

Take R a regret minimizer over set $S^{0}=\left\{y \in \mathbb{R}^{n}:\left\{y, x \leq 0 v_{x \in S}\right\} \subset \mathbb{B}_{2}\right.$
to Next Statatey ($\mathrm{v}^{\text {t }}$)
$\theta^{t}<R$. Next Strategy $\left(V^{t}\right)$
output a forcing action for $H^{t}=\left\{x \in \in \mathbb{R}^{n}:\left\langle x \theta^{t}\right\rangle \leq 0\right\}$

fin Receive Payoff ($u\left(x^{t}, y^{t}\right)$)
R. observe Utility $\left(u\left(x^{t}, y^{t}\right)\right)$

Ignoring v^{t} for now,

$=\max _{\hat{s} \in 5^{\circ}} \frac{\left\langle\hat{s}, \hat{i} \sum_{n} \sum\left(x^{*}, y^{4}\right)\right\rangle}{\|\hat{s}\|}$

By $\cap \mathbb{B}_{2}$, eliminate $\|\hat{s}\|$ in denominator $\underbrace{}_{\leq 0 \forall t}$

Lecture 10105

A half space H that contains the target set S
is forceable if $\exists x^{*} \in X \quad \forall y \in Y \quad u\left(x^{*}, y\right) \in H$
We call x^{*} a forcing action for H

$$
\begin{aligned}
& u(x, l)=l-(x, l>\cdot 1 \\
& \frac{R^{T}}{T} \leq \min _{\hat{s} \in \mathbb{R}_{s 0}^{n}}\left\|\hat{s}-\frac{1}{T} \sum u\left(l^{t}, x^{t}\right)\right\|_{2}
\end{aligned}
$$

Regret matching
(1) Blackwell alg
(2) FTRL with $\frac{1}{2}\left\|\|_{2}^{2}\right.$

Predictive Regret Matching
(1) PFTRL with $\frac{1}{2}\|:\|_{2}^{2}$

Regret Matching Plus
0 OMO with $\frac{1}{2} \| l h^{2}$
Predictive Regret Matching Plus \leftarrow SOTA for (1)POMD with $\frac{1}{2}\left\|\|_{2}^{1}\right.$ non-poker
(poker is odd in general,
egg. there are
really bad actions)

Different paths to RM/RM+

Lecture $10 / 05$ cont.
(P) FTRL
f_{n} Next Strategy $\left(m^{t}\right)$

$$
\text { return } \underset{\hat{x} \in x}{\operatorname{argmax}}\left\{\left(L^{t-1}+m^{t}\right)^{\top} \hat{x}-\frac{1}{\eta} \varphi(\hat{x})\right\}
$$

in Observe Utility $\left(\ell^{t}\right)$

$$
L^{t} \leftarrow L^{t-1}+e^{t}
$$

(P) MD

In NextStrategy $\left(m^{t}\right)$

$$
\text { return } \underset{\hat{x} \in X}{\operatorname{argmax}}\left\{\left(m^{t}\right)^{\top} \hat{x}-\frac{1}{\eta} D_{\varphi}\left(\hat{x} \| z^{t-1}\right)\right\}
$$

in Observe $V+i l i t y\left(l^{t}\right)$

$$
z^{t} \leftarrow \underset{\tilde{z} \in X}{\operatorname{argmax}}\left\{\left(\ell^{t}\right)^{T}-\frac{1}{\eta} D_{\varphi}\left(\hat{x} \| z^{t-1}\right)\right\}
$$

- Abernethy's algorithm
in Next Strategy ()
$\theta^{t} \leftarrow$ R. Next strategy ()
return forcing action x^{t} for $H^{t}=\left\{x:\left\langle x, \theta^{t}\right\rangle \leq 0\right\}$
in Observe Blackwell Payoff $\left(u\left(x^{t}, y^{t}\right)\right)$
R. Observe Utility $\left(u\left(x^{t}, y^{t}\right)\right)$
- For today, R regret minimizer for 5° instead of $5^{\circ} \cap B_{2}$ and it is either FTRL or OMD no matter η or φ

Fact. Define $R^{\top}(\hat{x})=\sum\left(\ell^{t}\right)^{\top} \hat{x}-\Sigma\left(\ell^{t}\right)^{\top} x^{t}$
For POMD and PFTRL: $\forall \hat{x} \in X \quad R^{\top}(\hat{x}) \leq \frac{\varphi(\hat{x})}{\eta}+\eta \sum\left\|l^{t}-m^{t}\right\|_{*}^{2}$

$$
\begin{aligned}
\min _{\hat{s} \in s} \| \hat{s}-\frac{1}{T} \sum u\left(x^{t}, y^{t} \|_{2}\right. & =\max _{\hat{s} \in s^{0} \cap \mathbb{B}_{2}}\left\langle\frac{1}{T} \sum u\left(x^{t}, y^{t}\right), \hat{s}\right\rangle \\
& =\max _{\hat{s} \in s^{0} \cap \mathbb{B}_{2}}\left\langle\frac{1}{T} \sum l^{t}, \hat{s}\right\rangle \\
& =\frac{1}{T}\left[\max _{\hat{s} \in S^{\circ} \cap \mathbb{B}_{2}} \sum\left\langle l^{t}, \hat{s}\right\rangle-\sum\left\langle l^{t}, \theta^{t}\right\rangle\right]+\underbrace{\frac{1}{T} \sum\left\langle l^{t}, \theta^{t}\right\rangle}_{\leqslant 0} \\
& =\frac{1}{T} \max _{\hat{s} \in S^{\circ} \cap \mathbb{B}_{2}} R^{T}(\hat{s}) \\
& \rightarrow 0
\end{aligned}
$$

Lecture $10 / 05$ cont.

- Take Blackwell's game Γ.

Use Abernethy's alg to solve Γ,

$$
R=F T R L, \varphi=\frac{1}{2}\|\cdot\|_{2}^{2} \text {, domain } \mathbb{R}_{\geq 0}^{n^{\prime}} \text {. }
$$

in Next Strategy ()

$$
\begin{aligned}
& \theta^{t} \leftarrow \underset{\hat{x} \in \mathbb{R}_{\geq 0}^{n}}{\operatorname{argmax}}\left\{\eta\left(L^{t-1}\right)^{\top} \hat{x}-\frac{1}{2 \eta}\|\hat{x}\|_{2}^{2}\right\} \\
&=\underset{\hat{x} \in \mathbb{R}_{\geq 0}^{n}}{\operatorname{argax}}\left\{-\frac{1}{2}\left\|\hat{x}-L^{t-1} \eta\right\|_{2}^{2}\right\} \\
&=\underset{\hat{x} \in \mathbb{R}_{\geq 0}^{n}}{\operatorname{argmin}}\left\{\left\|\hat{x}-\eta L^{t-1}\right\|_{2}^{2}\right\} \\
&=\underset{\operatorname{proj}_{\mathbb{R}_{20}^{n}}\left(\eta L^{t-1}\right)}{ } \\
&=\left[\eta L^{t-1}\right]^{+} \in \mathbb{R}_{\geq 0}^{n} \\
& x^{t} \leftarrow \frac{\theta^{t}}{1^{\top} \theta^{t}}
\end{aligned}
$$

return x^{t}

- in Observe Blackwell Pay off $\left(u\left(x^{t}, y^{t}\right) \in \mathbb{R}^{n}\right)$

$$
L^{t} \leqslant L^{t-1}+u\left(x^{t}, y^{t}\right)
$$

- The predictive regret matching guarantees regret

$$
\begin{aligned}
R^{T} & \leq \max _{3 \in \mathbb{R}_{20}^{n} \cap B_{2}} \frac{\varphi(\xi)}{\eta}+\eta \sum\left\|u\left(x^{t}, y^{t}\right)-v^{t}\right\|_{*}^{2} \quad \forall \eta>0 \\
& \leq \frac{1}{2 \eta}+\eta \sum\left\|u\left(x^{t}, y^{t}\right)-v^{t}\right\|_{*}^{2} \\
& \leq \sqrt{2 \sum\left\|u\left(x^{t}, y^{t}\right)-v^{t}\right\|_{*}^{2}}
\end{aligned}
$$

Lecture 10/07

- Monte-Carlo CFR: standard sublinear method

Suppose only one leaf nonzero util

Then all other paths have utile 0

$$
\begin{aligned}
&\left(\begin{array}{l}
v_{1} \\
v_{3} \\
v_{3}
\end{array}\right) \text { "Coin with } 3 \text { faces" (uniform) } \\
& \text { values } 1,2,3 \\
& \text { flip } 1 \rightarrow\binom{3 v_{1}}{\vdots}, 2 \rightarrow\left(\begin{array}{l}
0 \\
3_{0} \\
v_{2}
\end{array}\right), 3 \rightarrow\binom{0}{3 v_{3}}
\end{aligned}
$$

"Importance sampling" can generalize to p_{1}, p_{2}, p_{3} instead of uniform just $\frac{1}{p_{i}}$ instead of $\begin{gathered}p_{1}, p_{2}, p_{3} \\ \end{gathered}$

Lecture $10 / 07$ cont.
An unbiased estimator for Ay^{t} can be computed by
(1) Pick unbiased estimator \tilde{y}^{t} for y^{t}
(2) Compute A \tilde{y}^{t}

Note: \tilde{y}^{t} can be very sparse
$u(x, y)=x^{\top} A y$

but recall x, y already in sequence form
$=\Sigma_{z \text { terminal }} u(z) \times\left[\sigma_{1}(z)\right] y\left[\sigma_{2}(z)\right] P_{\text {chance }}(z)$
we will show an unbiased estimator is
(1) Pick z with distribution Perchance $(z) y\left[\sigma_{2}(z)\right] \tilde{x}\left[\sigma_{1}(z)\right]$
(2) Consider vector $\frac{\mu(z)}{\tilde{x}\left[\sigma_{1}(z)\right]} e_{\sigma_{1}(z)}$ _basis vector, \mid where $\sigma_{1}(z)$ is $\in \mathbb{R}^{|z|}$

This is known as outcome sampling

- The degradation in regret due to sampling $\left|R^{\top}-\tilde{R}^{\top}\right|$ is upper bounded by $\sqrt{2 T \log / s}(M+\tilde{M})$ with probability $\geq 1-\delta \quad \forall \delta \in(0,1)$
- Proof a little involved,

Azuma Hoeffaing on martingales
-But overall, sampling does not hurt much

- In practice: for games where CFR can handle it, just using CFR is faster but for huge games, MCCFR preferred for sublinear

This concludes CFR, online learning, Now, offline learning.

- Note. First order offline optimization has no theoretical/practical benefits over online.
- Offline optimization
(A)First-order saddle point solvers
(B)First-order gradient descent based

OMethods based on the linear programming formulation
(A) $\max _{x \in X} \min _{y \in Y} x^{\top} A y$
$\left.\begin{array}{l}\text { - Excessive gap technique [Nesterou] } \\ \text { - Mirror prox } \quad \text { [Nemirouski] }\end{array}\right\} \begin{aligned} & 0\left(\frac{1}{\tau}\right) \text { convergence rate } \\ & \text { to saddle point }\end{aligned}$
POMD is more powerful nowadays

Lecture 10/07 cont.
(B) $\max _{x \in X} \min _{y \in Y} X^{\top} A y=\max _{x \in X} g(x)$
where $g(x)=\min _{y \in Y} x^{\top} A y$ is concave
-Gradient ascent

- ADAM (?)
- $\nabla g=A_{y}{ }^{*}$ where y^{*} solution to $\min _{y \in y} x^{\top} A y$
(c) Linear programming
$\max _{x \in Q_{1}} \min _{y} x_{Q_{2}} x^{\top} A y$
$=\max _{x} \min _{y} x^{\top} A_{y}$
$F_{2} y=f_{2}, y \geq 0$

$$
F_{1} x=f_{1}, x \geq 0
$$

Not quite a LP but min is LP

$$
\begin{gathered}
=\max _{x} \max _{v} f_{2}^{\top} v \\
F_{2}^{\top} v \leq A^{\top} x \\
F_{1} x=f_{1}, x \geq 0 \\
=\max _{x, v} f_{2}^{\top} v \\
F_{2}^{\top} v \leq A^{\top} x \\
F_{1} x=f_{1} \\
x \geq 0
\end{gathered}
$$

Solvers
Simplex
$\left.\begin{array}{l}\text { - Interior point/Barrier } \\ \text { - Ellipsoid }\end{array}\right\} \begin{aligned} & \left.\text { guarantee } \begin{array}{l}\text { error } \leqslant \varepsilon \\ \text { in time } O\left(\log \frac{1}{\varepsilon}\right)\end{array}\right)\end{aligned}$

- Payoff matrix sparsification
$A=U M^{-1} V^{\top}+\hat{A} \quad$ size of sparsification

$$
=n n 2 V+n n z M+n n z V+n n z \hat{A}
$$

$$
\begin{aligned}
A^{\top} x & =\left(\hat{A}^{\top}+U M^{-1} V^{\top}\right) x \\
& =\hat{A}^{\top} x+V M^{-T} U^{\top} x \\
& =\hat{A}^{\top} x+V M^{-\top} w \\
& =\hat{A} x+V z
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top} x=\hat{A} x+V z \\
& M^{-\top} z=w \\
& U^{\top} x=w
\end{aligned}
$$

- So sparsified

$$
\begin{aligned}
& \max _{x} v f_{2}^{\top} v \\
& F_{2}^{\top} v \leq \hat{A}^{\top} x+V_{z} \\
& M^{-\top} z=V^{\top} x \\
& F_{1} x=f_{1} \\
& x \geq 0
\end{aligned}
$$

Lecture $10 / 12$ sot Practical Game Abstraction

- Automated game abstraction [Gilpin\&Sandholm EC-06,ACM07]
- Used in all competitive Texas Holden today

- Lossless game abstraction

Information filters

- Can make game smaller by filtering the information a player receives
- Signal tree
- Each edge corresponds to the revelation of some signal by nature to at least one player
- Abstraction algorithm operates on it
- Isomorphic relation
- Strategic symmetry between nodes
- Recursively, two leaves in signal tree are isomorphic if for each action history in the game, the payoffs are the same.
- Recursively, two internal nodes in signal tree are isomorphic if they are siblings and their children are isomorphic
- Need custom perfect matching algorithm for isomorphism children matching
-Game Shrink
- Bottom up pass: DP to mark isomorphic pairs of nodes in signal tree
- Top down pass: starting from top of signal tree, perform transformation (merge isomorphic pairs) wherever passible
- The. To do all transforms,
- $\widetilde{O}\left(n^{2}\right), n=\#$ nodes in signal tree
- Usually highly sublinear in game size
- Solved AI challenge problem (Shit \&littman 01] Rhode Island Holden
- 3.1 billion nodes in game tree
- No abstraction, LP has 91224226 rows and cols $\Rightarrow 4$ unsolvable
- After abstraction, LP has 1237238 rows and cols (50428638 nonzeros)
- Abstraction runs in 1 second
- CPLEX barrier took 8 days, 25 GB of RAM back then [2006/2007]
- Exact Nash equilibrium
- Lossy game abstraction
- Texas holden poker
- 2-player limit 10^{18} nodes
- 2-player no-limit 10^{165} nodes
- Lossless abstraction still too big, need lossy abstraction
- Usually 2 orders of magnitude, $10^{165} \rightarrow 10^{163}$ still eh

Lecture 10/12 cont.

GameShrink can abstract more by not requiring a perfect matching $=710$ sly

- \mid wins $_{\text {model }}-$ Wins $_{\text {node }} 2|+|$ losses $_{\text {mate }}-$ loser $_{\text {node }} \mid<k$

Greedy \Rightarrow lopsided abstractions
Abstraction in each player's card tree separately [gilpin \& Sand holm AAMAS-07]

- Clustering + Integer programming

For every betting round i, tell alg how many buckets k_{i} it is allowed to generate
First betting round $\Rightarrow k_{1}$-means clustering to bucket nodes

- Later rounds \Rightarrow run IP to determine how many children each parent should be allowed to have so that total $\#$ of children does n't exaed k_{i} - Value determined with k-means clustering for all $\mathrm{K}_{\mathrm{in}(\mathrm{n}}^{\mathrm{to30}}$ each parent before IP

Potential aware abstraction

- All prior ales had probability of winning as similarity metric
- Assumes no more betting
- Doesn't capture potential
- Potential is multidimensional, not positive or negative
- Bottom up pass for round 1
- L_{1} norm on transition probability vector to (oracle) next round's buckets
- Last round, no more potential \Rightarrow probability of winning assuming rollout as similarity metric
- See slides for details

Important ideas for practical lossy abstraction 2007-2013

- Integer programming
- Potential-aware

Imperfect recall
SOTA: Potential Aware Imperfect Recall Abstraction with Earth-Mover distance in imperfect information games Expected hand strength $=$ ens $=$ equity is $P($ winning $)+\frac{1}{2} P($ tying $)$
against uniform random draw of private cards for opponent assuming uniform random rollout of remaining public cards

- Used to cluster hands
- Bat doesn't account for hand strength
- Earth mover distance, distance metric for histograms
min cost turning one pile into another
- cost = amount of dirt moved x distance moved
- Linear time in ID but challenging to compute in higher dimensions

Potential-aware abstraction considers all future rounds, not just final round

Lecture 10/19 Action Abstraction

See slides

Lecture 10/21 Libratus - S0TA 2 -player no-limit Texas holdém

AlphaGo extends to perfect information games only
In perfect info games, subgames can be solved with info in subgame only Not true in imperfect info games!

Heads up (2 player) No Limit texas Hold em

- 10^{161} situations

Main benchmark/challenge problem for imperfect info game

- No Al beat humans prior to Librates

Libratus (rematch after prior Al lost)

- 120 k hands over 20 days, 4 players
- Jan 2017
- \$200k/pros based on performance - not NSF, private raise. \$20k base, bot nothing, to 3 by perf
- Weren't confident that Libratus would win

Poker players are intense ready to wake up/stop showering to play
Conservative experiment design
Slides for details
On avg human 21 s per hand, Al 13s per hand
Al vs ML
No data needed

- Doesn't assume opponent will behave the same way Not exploitable
- Librates

Pah Bridges supercomputer

Abstraction

- Same algorithm as Tartanian 8
- But much finer abstraction
- Abstracted player bet sizes, including radical bet sizes which were used

Lecture 10/21 cont.

- Equilibrium finding

Improved MCCFR

- System setup, see slides
- Subgame solver

NIPSI7 best paper

- 2015 unsafe subgame solving
- No theoretical guarantees
- Does well in practice for some domains
- Assume other player plays according to blueprint strategy
- 2014 Resolve refinement
- PI picks between entering subgame or taking EV blueprint of subgame

2016 max margin refinement

$$
\text { - Margin }{ }_{H}=E V\left[\text { Alt }_{H}\right]-E V\left[\text { Enter }_{H}\right]
$$

- Maximize minimum margin
- 2017 Reach max margin refinement
- Mistake by opponent is a gift
- Split gifts among subgame by probability subgame reached
can substitute lower bound estimates on the gift
Nested subgame solving
- Solve subtree in realtime for off tree action taken

Lecture $10 / 26$
Self-improver

- Intuition: use opponents actions as hints for where we are weak

See slides for more on Libratus

- Depth-limited subgame solving and Pluribus, SOTA for multiplayer no limit Texas holdem
" "Solve a middle game"
Depth-limited search for imperfect information game

Lecture $11 / 02$

- DeepMind SC2
- Great talk

What is an action's representation?

Lecture 11/04

Certificates in extensive form games
Deep RL [Alpha...]
-Good practical pert
No exploitability bounds
Bandit regret minimization [Farina 20]
Certificates
Compute Nash by incrementally expanding game tree
Pseudogame
Game wo known utils on all terminal nodes
Small certificates
Small $=O\left(N^{c}\right), \ll 1, N=\#$ nodes in entire game
See slider...
Matching pennies, C terminal nodes
BC
BC
c<4:0 rounds lost under optimistic best response $c=4: \frac{1}{2}$ rounds lost
Inductive case

$H=x$

$$
c=c_{1}+c_{2}+c_{3}+c_{4}
$$

$$
x+x \log _{66} C_{1}+(1-x) \log _{16} C_{2} \leqslant u_{P_{1} H}
$$

$$
(1-x)+(1-x) \log _{6} C_{3}+x \log _{6} c_{4}<u_{P_{1} T}
$$

want $\frac{c_{1}}{c_{1}+t_{1}}=x, \frac{c_{4}}{c_{4}+t_{3}}=x, p=\frac{c_{1}+t_{1}}{c_{1}+t_{1}+t_{1}+c_{4}}$
$\log _{6} C+\underbrace{\min \left(P_{H}, P_{T} T\right)}_{\leqslant 0}$, so P_{2} always wins that much

Oracle mode

Lecture $11 / 09$

- Slides
- Exp 4
. Next page

Lecture $11 / 09$ cont.
Recall MWU, k experts
Initialize $\forall j \in[k], P_{j}^{0}=\frac{1}{k}$ and $R_{j}^{0}=0$
for t from \mid to ∞ :
select expert j according to p_{j}^{t-1}
receive reward r_{j}^{t} for each expert $j \xrightarrow{\text { Exp 3 }}$ Receive reward r_{j}^{t} for expert j only $\forall_{j}, R_{j}^{t} \leftarrow R_{j}^{t-1}+r_{j}^{t}$

$$
P_{j} \leftarrow \frac{e^{2} \eta R_{j}^{+}}{\Sigma_{i} e^{\eta R_{i}^{+}}}
$$ $\rightarrow R_{j}^{t} \leftarrow R_{j}^{t-1}+\frac{r_{j}^{t}}{P_{j}^{t-1}}$

missing fancy guarantees

Exp 4
Experts are strategies, e_{j}^{t} is the action recommended by expert k experts, n actions j at fine t Initialize $\forall_{j} \in[k], \rho_{j}^{\circ}=\frac{1}{k}, R_{j}^{0}=0$
For $t=1$ to ∞ :
select an action i according to $\left(\Sigma_{j: e_{j}^{t}=i} p_{j}^{t-1}\right):=P_{i}^{t-1}$ receive reward r_{i}^{t} for action i update $R_{j}^{t} \leftarrow \begin{cases}R_{j}^{t-1}+ & \frac{e_{i}^{t}}{p_{t}^{t-1}} \\ R_{j}^{t-1} & \text { if } j \text { recommended } i \\ \text { net }_{t}^{t} & \text { otherwise }\end{cases}$ $P_{j}^{t} \leftarrow \frac{e^{\eta R_{j}^{t}}}{\sum_{i} e^{\eta R_{i}^{t}}}$

Lecture $11 / 11$

- Equilibrium refinements
- Traditionally from economics

Less/no opponent modeling
Intuitively, Nash equi optimizes for strong opponent

- Doesn't focus on parts of game tree where opponent wouldn't go
- Guess the ace

Dealer

"sequentially rational" \quad "sequentially irrational"
Nash eq not equally good when players make mistakes

Lecture IIII cont.

-Guess the ace with gifts

Trembling-hand refinement

- Introduce $\varepsilon>0$
- For any $\varepsilon>0$, imagine computing a Nash eq. in the game conceptual Framework s.t. the fact that every action is selected with lower bound probability $f(\varepsilon)$
- Return a limit point of those Nash eq. as $\varepsilon \rightarrow 0^{+}$
not just removing
dominated actions!

Lecture IIII cont.

Relationships

Computational complexity

Solution concept	General sum	Zero sum
Nash eq	PPAD-complete [DasKalakis 2009] [Chan \& Rang]	FP CRomanouski 62] [van Stengel 96]
QPE	PPAD-complete [Milterion\& Sprensen 2006]	FP $[11]$
EFPE	PPAD-complete [Farina\&Goti 2017]	FP $[11]$

- Trembling $\max _{x} \underset{C(\varepsilon)^{T} x}{ } P(\varepsilon)$
$\left.\begin{array}{ll}\max _{x} & c(\varepsilon)^{\top} x \\ & \begin{array}{l}A(\varepsilon) x=b(\varepsilon) \\ x \geq 0\end{array}\end{array}\right\} \begin{aligned} & A, b, c \text { "o nl" depend } \\ & \text { polynomially in } \varepsilon\end{aligned}$
Goal: compute a limit point of optimal solutions to $P(\varepsilon)$ as $\varepsilon \rightarrow 0^{+}$
- Stable basis

The $L P$ basis B is stable if there exist $\bar{\varepsilon}>0$ such that B is optimal for $P(\varepsilon) \forall 0<\varepsilon \leq \bar{\varepsilon}$

Negligible positive perturbation NPP $\cdot \varepsilon^{\star}>0$ st $\forall 0<\bar{\varepsilon}<\varepsilon^{\star}$ any optimal basis for the numerical LP $P(\bar{\varepsilon})$ is stable

- Thm. A NPP ε^{*} exists and it can be computed in polytime in the input size - Above is not practical. Practical:

3 different notions of "equilibria"

- Free communication \rightarrow Nash equilibrium for the "meta player"
- No communication ever \rightarrow team maxmin equilibrium TME, favored in PL
- No communication during game but players can discuss common tactics before playing
\angle TMECor TME with correlation device
4 convex unlike TME
- Today: only discussing 0 sum

TME team: $\max _{x, y} \min _{z}\left\{x_{H} y_{H} z_{H}+x_{T} y_{T} z_{T}\right\}$
st $x_{H}+x_{T}=1$
$y_{H}+y_{T}=$
$z_{H}+z_{T}=1$
$x, y, z \geq 0$
$=\max _{x, y} \min \left\{x_{H} y_{H}, x_{T} y_{T}\right\}$
$w \log X_{H} Y_{H} \leq X_{T} Y_{T}$

$$
\Leftrightarrow x_{H} y_{H} \leq\left(1-x_{H}\right)\left(1-x_{T}\right)
$$

$$
\Leftrightarrow \quad x_{H}+Y_{H} \leq 1
$$

$$
\left.\begin{array}{ll}
\max _{x, y} & x_{H} y_{H} \\
\text { st } & x_{H}+x_{T}=1 \\
& y_{H}+y_{T}=1 \\
x, y \geq 0 \\
& x_{H}+y_{H} \leq 1
\end{array}\right\} \text { irrelevant }\left\{\begin{array}{l}
\max _{x} x_{H}\left(1-x_{H}\right) \\
\text { since last constraint tight } \\
0 \leq x_{H} \leq 1 \Rightarrow x_{H}=\frac{1}{4}
\end{array}\right.
$$

But TME opponent

$$
\begin{aligned}
& \min _{z} \max _{x y}\left(x_{H} y_{H} z_{H}, x_{T} y_{T} z_{T}\right) \\
& \geq \min _{z}\left(z_{H}, z_{T}\right)=\frac{1}{2}
\end{aligned}
$$

so value maximin \neq value minmax

Lecture III /16 cont.

- Recall $\Pi_{i}=$ deterministic strategies
- A TME Cor is a distribution $H \in \Delta\left(\Pi_{1} \times \Pi_{2}\right)$

$$
\begin{aligned}
& \max _{H \in \Delta\left(n_{1} \times n_{3}\right)} \min _{z \in Q_{s}} \sum_{\substack{\left(\pi_{1}, \pi_{1}\right) \\
n_{1} \\
n_{2}}} H\left(\pi_{1}, \pi_{2}\right)\left(\sum _ { \substack { w \in w \\
\text { tefmimial } \\
\text { states } } } u _ { w } \cdot \pi _ { 1 } \left[\sigma _ { 1 } (\omega] \cdot \pi _ { 2 } \left[\sigma_{2}(\omega) \cdot z\left[\sigma_{z}(\omega] \cdot c\left[\sigma_{c}(\omega)\right]\right)\right.\right.\right. \\
& =\max _{H} \min _{z} \sum_{w \in W} \underbrace{\left(\sum_{\left(w_{1}, \pi_{z}\right)} H\left(\pi_{1}, \pi_{2}\right) \cdot \pi_{1}\left[\sigma_{1} \omega\right) \cdot \pi_{2}\left[\sigma_{z}(\omega)\right]\right.}_{:=\gamma[z] \text { change of var }}) u_{w} \cdot z\left[\sigma_{z}(\omega)\right] \cdot c\left[\sigma_{c}(\omega)\right] \\
& \text { linear in } z \text { ! } \\
& \text { But the polytope, exponentially big simplex }
\end{aligned}
$$

Let $f: \Delta\left(\Pi_{1} \times \Pi_{2}\right) \rightarrow \mathbb{R}^{|w|}$

$$
\left.H \rightarrow\left(\sum_{\left(\pi_{1}, \pi_{2}\right)} H\left(\pi_{1}, \pi_{2}\right) \cdot \pi_{1}\left[\sigma_{1}, w\right) \cdot \pi_{2}\left[\sigma_{2} w\right]\right)\right)_{w} \in W
$$

Then above

$$
=\max _{\gamma \in \Omega} \min _{\gamma \in \mathbb{R}^{(w)}} \sum_{w \in W} \gamma[w] \cdot u_{w} \cdot z\left[\sigma_{z}(w)\right] \cdot c\left[\sigma_{c}(w)\right]
$$

where $\Omega=1$ mage (f)

Some day I'll have the time to improve these notes...

