Dijkstra SSSP O(mlogn)or
O(m +nlogn) (fibheap)

while nodes unvisited:
visit cheapest n, update neighbor
costs to min(old, n+ edge)

Don'’t revisit visited nodes =>
can’t handle negative edges

Bellman-Ford SSSP D, , ; O(mn)
0 ifk=0andv=s
0 ifk=0andv+s

min{D, ; i, ml(n)D w1 T len(x,v)} else

“Extend one edge at a time”
Can detect negative cycles.

TSP T(n) = 0(n*2"), S(n) = O(n2")
len(x, t) if S={x,t}

in  C(S—1, ') +len(t, 1) el
tresa?’;lll’,l[’#x ( ? ) el’l( s ) else

Matrix APSP O(»* logn)
B, =min {4, +4;;} (<2edges)
C =B xB (<4edges), .

O(log n) squarings, mult is 0(n3)

Floyd-Warshall APSP  O(n%)
for kin [1,n]: forall i,j:

Ay =min{d;, Ay + A4}

Johnson APSP O(mn + n?* log n)

Add dummy node with len 0 to every
other, run Bellman to find shortest
path, add that length of shortest path
to all so that nonnegative, run Dijkstra
from every node

<instructor photos for good luck elided>
" = lim(1 + l) el = é = lim(1 —i)"

n—o0
Hence (1-1)" <1
m e

Capacity Constraint Ve, f(¢) < c(e)

Flow Conservation Vv & {s,#}, X, f(u,v) = X, f(v,u)
s-t Cut Partition of vertex setinto 4 and B such that s €4 and ¢ € B; cut capacity is %, ;om 415 €(€)
Skew-symmetry f(u,v) =— f(v,u) allows us to add flows together

Residual Capacity clu,v) =

c(u,v) —f(u,v)

Augmenting Path s-t path of positive residual capacity
Maxflow-Mincut any s-t flow <maximum s-t flow <minimum s-t cut<any s-t cut [saturated edges], true for (ir)rational caps
Integral Flow if all capacities are integers, exists maximum flow in which all flows are integers

Bipartite Matching s to L, t to R, all edges capacity 1, use Ford-Fulkerson
Max-flow Min-cost Edges have costw(e) as well as capacities c(e) . Modify Ford-Fulkerson, always pick least-cost path

Algorithm Description

Runtime

Notes [ F =max s-t flow]

Ford-Fulkerson

while 3 augmenting path:
push max flow along path

O(F (m + n))
F iterations, (m +n)DFS

Rational capacities OK
Irrational can be wrong/loops

Edmonds-Karp1

Pick largest capacity path

O(m*log F)
O(mlog F) iterations

Path found by binary search on answer method
of finding max capacity then use dfs

3 s-t path with capacity at least F/m;

Edmonds-Karp2

Pick shortest path

O(nm?)
At most nm iterations

d(s,t)never decreases, increases by
> 1 every miterations (BFS levels)

Linear Programs {variables, objective, constraints}, either Infeasible, Feasible and Bounded, or Feasible and Unbounded

Von-Neumann’s Theorem: Ib = ub for all finite, 2 player zero sum games
Existence of Stable Strategies: Every finite player game (with each player having a finite number of strategies) has at

least one (mixed-strategy) Nash equilibrium.

By convention, payoff matrix is row-player

-1/2  3/4
1 -3/2

Row Player picks max(min(col))

max(mm( -0.5p+(1-p), 0.75p-1.5(1-p)))

Col Player picks min(max(row))

min(max(-0.5p+0.75(1-p), p-1.5(1-p)))




Simplex Jump to better neighboring corners, this works because feasible set is convex, worst case exponential number
of corners (Klee-Minty cube: fix € €[0,0.5], 0<x, <1, €x, <x,, <1 - €x; creates hypercube with 24 corners)

Seidel m constraints, d dimensional variables - RANDOMLY add the constraints one by one, keep track of optimal so far,
adjust if necessary. Expected: O(d!m), Worst Case: O(d!m?)

Ellipsoid binary search w/ ellipsoids, runs in polytime wrt n, d, L (constraints, dimensions, bits to represent coefficients)
Karmarkar (kumarkar - a n g e r y) polytime interior-point method

Primal Dual (note: Dual(Dual) = Primal) | P/D | O U V possible, x impossible
maximize c’x minimize y’b Il Vv x v linfeasible
subjectto Ax<bh, x>0 | subjectto y’4>cT, y>0 O x vx Ofeasible, bounded

U Vv xx U unbounded

Weak Duality x feasible for primal, yfeasible for dual => ¢’x <y"b
Strong Duality primal feasible and bounded => dual feasible and bounded, and ¢’ x* = (y*)"» (max primal = min dual)

Polynomial Time for some constant ¢, runtime is O(n®) where n is input size

Poly-Time Reducible 4 <, B (A polytime reducible to B) if can solve A in polytime given polytime blackbox for B
Many-one (Karp) Reduction from A to B: polytime-computable f st x€Y , = f(x) €Y, and x E N, = f(x) E Ny

P decision problems solvable in polytime

NP decision problems w polytime verifiers, 3V (I,X) polytmest /e Y 23X, V([,X)=Yand IEN = VX, V(,X)=N
NP-Complete O if 1. Q eNP and 2. forall Q' eNP, 0’ <, Q. If only 2. satisfied, we call that NP-Hard

NP-Complete PkProblems :thonk:

Circuit-SAT Hamilton path Integer LP 3-COL

3-SAT Partition Binary integer LP k-COL

Vertex cover TSP Subset sum Independent set
Clique Set cover

Scheduling Schedule njobs w times p; >0 onmmachines, min max, Ties, Py greedy 20PT, sorted greedy 1.5 to 4/3 OPT

Vertex Cover Both 20PT: take both endpoints of arbitrary edge; LP where 0 <x, <1, min X,x, and round
(simply taking highest degree vertex can lead to log(n) times worse solution)
Set Cover Greedy is O(kInn), more precisely at most kIné +ksets [n(1—4)""" <n(d)"" =1]

Competitive Ratio (CR) Worst-case over possible future o, i.e. max(,%%

Better-Late-Than-Never has CR<2, if p=krthen CR=2 -5 If modeled as zero-sum game, close to CR = -4
Elevator CR: 2 - E/S is optimal, If E << S, with randomization can get CR = %

List Update 4-competitive

P, P, LP
max(r; + 3rz — 2z3) min(2y; + Bys + 1ys) —

max mjin Z inilj xv
st @ +@y+ 205 =2 st. i+ Tyw+2y 21 x L st.v < Y, UL v

i
S.t.zi xi=1
x;i=0
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Ty, ro, 2y > 0

m+2y+1ys =3
2in+oye+(—1)p=-2
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