
さ す が

Dijkstra SSSP or (m)O log n
 (fibheap) (m)O + n log n

while nodes unvisited:
visit cheapest n, update neighbor
costs to in(old, n dge)m + e

Don’t revisit visited nodes =>
can’t handle negative edges

Bellman-Ford SSSP Dv, n 1− (mn)O
 if k and v0 = 0 = s
 if k and v = ∞ = 0 / s
in{D , en(x,)} elsem v, k 1− min

x∈N (v)
Dx, k 1− + l v

“Extend one edge at a time”
Can detect negative cycles.

TSP (n) (n 2), S(n) (n2)T = O 2 n = O n
en(x,) if S x, }l t = { t

(S , t) en(t , t) else min
t ∈S, t = t, t = x′ ′ / ′ /

C − t ′ + l ′

Matrix APSP (n)O 3 log n
 (edges) in {A }Bij = m k ik + Akj ≤ 2

 (edges), ... C = B × B ≤ 4
squarings, mult is (log)O n (n)O 3

Floyd-Warshall APSP (n)O 3
for k in [1,n]: forall i,j:

in{A , }Aij = m ij Aik + Akj

Johnson APSP (mn)O + n2 log n
Add dummy node with len 0 to every
other, run Bellman to find shortest
path, add that length of shortest path
to all so that nonnegative, run Dijkstra
from every node

<instructor photos for good luck elided>
(1) , e (1)ex = lim

n→∞
+ n

1 n 1− = e
1 = lim

n→∞
− n

1 n

Hence 1)(− 1
m

m < e
1

Capacity Constraint e, f (e) c(e) ∀ ≤
Flow Conservation v ∈ s, }, Σ f (u,) f (v,) ∀ / { t u v = Σu u
s-t Cut Partition of vertex set into and such that and ; cut capacity is A B s ∈ A t ∈ B c(e)Σedges f rom A to B
Skew-symmetry allows us to add flows together (u,) (v,)f v =− f u
Residual Capacity (u,) c(u,) (u,)cf v = v − f v
Augmenting Path s-t path of positive residual capacity
Maxflow-Mincut any s-t flow maximum s-t flow minimum s-t cut any s-t cut [saturated edges], true for (ir)rational caps ≤ ≤ ≤
Integral Flow if all capacities are integers, exists maximum flow in which all flows are integers
Bipartite Matching s to L, t to R, all edges capacity 1, use Ford-Fulkerson
Max-flow Min-cost Edges have cost as well as capacities . Modify Ford-Fulkerson, always pick least-cost path (e)w (e)c

Algorithm Description Runtime Notes [max s-t flow] F =

Ford-Fulkerson while augmenting path: ∃
push max flow along path

(F (m))O + n
iterations, DFS F m)(+ n

Rational capacities OK
Irrational can be wrong/loops

Edmonds-Karp1 Pick largest capacity path (m)O 2 logF
iterations (m)O logF

s-t path with capacity at least ; ∃ m F /
Path found by binary search on answer method
of finding max capacity then use dfs

Edmonds-Karp2 Pick shortest path (nm)O 2
At most iterations mn

never decreases, increases by (s,)d t
every iterations (BFS levels) ≥ 1 m

Linear Programs {variables, objective, constraints}, either Infeasible , Feasible and Bounded , or Feasible and Unbounded
Von-Neumann’s Theorem : lb = ub for all finite, 2 player zero sum games
Existence of Stable Strategies : Every finite player game (with each player having a finite number of strategies) has at
least one (mixed-strategy) Nash equilibrium.

By convention, payoff matrix is row-player

Row Player picks max(min(col))

max(min(-0.5p+(1-p), 0.75p-1.5(1-p)))

Col Player picks min(max(row))

min(max(-0.5p+0.75(1-p), p-1.5(1-p)))

さ す が

Simplex Jump to better neighboring corners, this works because feasible set is convex, worst case exponential number
of corners (Klee-Minty cube: fix creates hypercube with corners) 0, .5], ε ∈ [0 , εx x 0 ≤ x1 ≤ 1 i ≤ xi+1 ≤ 1 − ε i 2d
Seidel m constraints, d dimensional variables - RANDOMLY add the constraints one by one, keep track of optimal so far,
adjust if necessary. Expected: , Worst Case: (d!m)O (d!m)O 2
Ellipsoid binary search w/ ellipsoids, runs in polytime wrt n, d, L (constraints, dimensions, bits to represent coefficients)
Karmarkar (kumarkar - a n g e r y) polytime interior-point method

Primal
maximize xcT
subject to x , xA ≤ b ≥ 0

Dual (note: Dual(Dual) = Primal)
minimize byT
subject to A , yyT ≥ cT ≥ 0

P/D I O U ✓ possible, x impossible
I ✓ x ✓ I infeasible
O x ✓ x O feasible, bounded
U ✓ x x U unbounded

Weak Duality feasible for primal, feasible for dual => x y x bcT ≤ yT
Strong Duality primal feasible and bounded => dual feasible and bounded, and (max primal = min dual) x y) bcT * = (* T

Polynomial Time for some constant , runtime is where is input size c (n)O c n
Poly-Time Reducible (A polytime reducible to B) if can solve A in polytime given polytime blackbox for B ≤ BA p
Many-one (Karp) Reduction from A to B: polytime-computable st and f (x) x ∈ Y A ⇒ f ∈ Y B (x) x ∈ NA ⇒ f ∈ NB
P decision problems solvable in polytime
NP decision problems w polytime verifiers, polytime st and V (I ,) ∃ X X , V (I ,) I ∈ Y ⇒ ∃ X = Y X , V (I ,) I ∈ N ⇒ ∀ X = N
NP-Complete if 1. NP and 2. for all NP , . If only 2. satisfied, we call that NP-Hard Q Q ∈ Q′ ∈ ≤ Q Q′ p
NP-Complete PkProblems :thonk:

Circuit-SAT
3-SAT
Vertex cover
Clique

Hamilton path
Partition
TSP

Integer LP
Binary integer LP
Subset sum

3-COL
k-COL
Independent set
Set cover

Scheduling Schedule jobs w times on machines, ; greedy 2OPT, sorted greedy 1.5 to 4/3 OPT n pj > 0 m in max Σ pm i j∈Si j
Vertex Cover Both 2OPT: take both endpoints of arbitrary edge; LP where and round , min Σ x0 ≤ xi ≤ 1 i i
(simply taking highest degree vertex can lead to log(n) times worse solution)
Set Cover Greedy is , more precisely at most sets [] (k)O ln n k ln k

n + k (1) ()n − k
1 k ln n < n e

1 ln n = 1

Competitive Ratio (CR) Worst-case over possible future , i.e. σ axm σ

ALG(σ)
OPT (σ)

Better-Late-Than-Never has , if then . If modeled as zero-sum game, close to RC ≤ 2 rp = k RC = 2 − r
p RC = e

e 1−
Elevator CR: 2 - E/S is optimal, If E << S, with randomization can get RC = e

e 1−
List Update 4-competitive

