DijkstraSSSP $O(m \log n)$ or $O(m + n \log n)$ (fibheap)while nodes unvisited: visit cheapest n, update neighbor costs to $min(old, n + edge)$ Don't revisit visited nodes => can't handle negative edges	Bellman-FordSSSP $D_{v, n-1}$ $O(mn)$ 0if $k = 0$ and $v = s$ ∞ if $k = 0$ and $v \neq s$ $min \{D_{v, k-1}, \min_{x \in N(v)} D_{x, k-1} + len(x, v)\}$ else"Extend one edge at a time"Can detect negative cycles.	$\frac{\text{TSP}}{len(x,t)} T(n) = O(n^2 2^n), S(n) = O(n2^n)$ $if S = \{x,t\}$ $\min_{t' \in S, t' \neq t, t' \neq x} C(S-t, t') + len(t', t) else$
$\begin{array}{l} \underline{\text{Matrix}} \text{ APSP } O(n^3 \log n) \\ B_{ij} = \min_k \{A_{ik} + A_{kj}\} \ (\leq 2 \text{ edges}) \\ C = B \times B \ (\leq 4 \text{ edges}), \ \dots \\ O(\log n) \text{ squarings, mult is } O(n^3) \\ \underline{\text{Floyd-Warshall}} \ \text{ APSP } O(n^3) \\ \text{for k in [1,n]: forall i,j:} \\ A_{ij} = \min\{A_{ij}, A_{ik} + A_{kj}\} \end{array}$	<u>Johnson</u> APSP $O(mn + n^2 \log n)$ Add dummy node with len 0 to every other, run Bellman to find shortest path, add that length of shortest path to all so that nonnegative, run Dijkstra from every node	<pre><instructor elided="" for="" good="" luck="" photos=""> $e^x = \lim_{n \to \infty} (1 + \frac{1}{n})^n, e^{-1} = \frac{1}{e} = \lim_{n \to \infty} (1 - \frac{1}{n})^n$ Hence $(1 - \frac{1}{m})^m < \frac{1}{e}$</instructor></pre>

Capacity Constraint $\forall e, f(e) \leq c(e)$

Flow Conservation $\forall v \notin \{s, t\}, \Sigma_u f(u, v) = \Sigma_u f(v, u)$

s-t Cut Partition of vertex set into A and B such that $s \in A$ and $t \in B$; cut **capacity** is $\sum_{edges from A \text{ to } B} c(e)$

Skew-symmetry f(u, v) = -f(v, u) allows us to add flows together

Residual Capacity $c_f(u, v) = c(u, v) - f(u, v)$

Augmenting Path s-t path of positive residual capacity

Maxflow-Mincut any s-t flow \leq maximum s-t flow \leq minimum s-t cut \leq any s-t cut [saturated edges], true for (ir)rational caps **Integral Flow** if all capacities are integers, exists maximum flow in which all flows are integers

Bipartite Matching s to L, t to R, all edges capacity 1, use Ford-Fulkerson

Max-flow Min-cost Edges have cost w(e) as well as capacities c(e). Modify Ford-Fulkerson, always pick least-cost path

Algorithm	Description	Runtime	Notes [F = max s-t flow]
Ford-Fulkerson	while ∃ augmenting path: push max flow along path	O(F(m+n)) F iterations, $(m+n)$ DFS	Rational capacities OK Irrational can be wrong/loops
Edmonds-Karp1	Pick largest capacity path	$O(m^2 \log F)$ $O(m \log F)$ iterations	\exists s-t path with capacity at least F/m ; Path found by binary search on answer method of finding max capacity then use dfs
Edmonds-Karp2	Pick shortest path	$O(nm^2)$ At most <i>nm</i> iterations	d(s, t) never decreases, increases by ≥ 1 every <i>m</i> iterations (BFS levels)

Linear Programs {variables, objective, constraints}, either *Infeasible*, *Feasible and Bounded*, or *Feasible and Unbounded* Von-Neumann's Theorem: Ib = ub for all finite, 2 player zero sum games

Existence of Stable Strategies: Every **finite** player game (with each player having a **finite** number of strategies) has at least one (mixed-strategy) Nash equilibrium.

By convention, payoff matrix is row-player	Row Player picks max(min(col))	Col Player picks min(max(row))
-1/2 3/4 1 -3/2	-1/2 1 -3/2 max(min(-0.5p+(1-p), 0.75p-1.5(1-p)))	min(max(-0.5p+0.75(1-p), p-1.5(1-p)))

さすが

Simplex Jump to better neighboring corners, this works because feasible set is convex, worst case **exponential** number of corners (Klee-Minty cube: fix $\epsilon \in [0, 0.5]$, $0 \le x_1 \le 1$, $\epsilon x_i \le x_{i+1} \le 1 - \epsilon x_i$ creates hypercube with 2^d corners)

Seidel m constraints, d dimensional variables - RANDOMLY add the constraints one by one, keep track of optimal so far, adjust if necessary. Expected: O(d!m), Worst Case: $O(d!m^2)$

Ellipsoid binary search w/ ellipsoids, runs in **polytime** wrt n, d, L (constraints, dimensions, bits to represent coefficients) **Karmarkar (kumarkar - a n g e r y)** polytime interior-point method

Primal	Dual (note: Dual(Dual) = Primal)	P/DIOU	\checkmark possible, x impossible
maximize $c^T x$	minimize $y^T b$	I √x√	l infeasible
subject to $Ax \le b, x \ge 0$	subject to $y^T A \ge c^T$, $y \ge 0$	O x√x	O feasible, bounded
		U √xx	U unbounded

Weak Duality *x* feasible for primal, *y* feasible for dual => $c^T x \le y^T b$

Strong Duality primal feasible and bounded => dual feasible and bounded, and $c^T x^* = (y^*)^T b$ (max primal = min dual)

Polynomial Time for some constant *c*, runtime is $O(n^c)$ where *n* is input size

Poly-Time Reducible $A \leq_p B$ (A polytime reducible to B) if can solve A in polytime given polytime blackbox for B **Many-one (Karp) Reduction** from A to B: polytime-computable f st $x \in Y_A \Rightarrow f(x) \in Y_B$ and $x \in N_A \Rightarrow f(x) \in N_B$ **P** decision problems solvable in polytime

NP decision problems w polytime verifiers, $\exists V(I,X)$ polytime st $I \in Y \Rightarrow \exists X, V(I,X) = Y$ and $I \in N \Rightarrow \forall X, V(I,X) = N$ **NP-Complete** Q if 1. $Q \in NP$ and 2. for all $Q' \in NP$, $Q' \leq_p Q$. If only 2. satisfied, we call that **NP-Hard NP-Complete PkProblems :thonk:**

Circuit-SAT	Hamilton path	Integer LP	3-COL
3-SAT	Partition	Binary integer LP	k-COL
Vertex cover Clique	TSP	Subset sum	Independent set Set cover

Scheduling Schedule *n* jobs w times $p_i > 0$ on *m* machines, min max_i $\Sigma_{i \in S_i} p_i$; greedy 2OPT, sorted greedy 1.5 to 4/3 OPT

Vertex Cover Both 2OPT: take both endpoints of arbitrary edge; LP where $0 \le x_i \le 1$, $\min \Sigma_i x_i$ and round

(simply taking highest degree vertex can lead to log(n) times worse solution)

Set Cover Greedy is $O(k \ln n)$, more precisely at most $k \ln \frac{n}{k} + k$ sets $[n(1-\frac{1}{k})^{k \ln n} < n(\frac{1}{e})^{\ln n} = 1]$

Competitive Ratio (CR) Worst-case over possible future σ , i.e. $max_{\sigma} \frac{ALG(\sigma)}{OPT(\sigma)}$

Better-Late-Than-Never has $CR \le 2$, if p = kr then $CR = 2 - \frac{r}{p}$. If modeled as zero-sum game, close to $CR = \frac{e}{e-1}$ **Elevator** CR: 2 - E/S is optimal, If E << S, with randomization can get $CR = \frac{e}{e-1}$ **List Update** 4-competitive

		\mathcal{P}_1	\mathcal{P}_2 LP
$\max(x_1 + 3x_2 - 2x_3)$	$\min(2y_1 + 6y_2 + 1y_3)$	$\max \min \sum x_i U_{ii}^1$	$\max_{x,v} v$
s.t. $x_1 + x_2 + 2x_3 \le 2$	s.t. $y_1 + 7 \ y_2 + 2 \ y_3 \ge 1$	$x j \sum_{i} x_i v_i v_j$	s.t. $v \leq \sum_{i} x_i U_{ij}^1, \forall j$
$7x_1 + 2x_2 + 5x_3 \le 6$	$y_1 + 2 y_2 + 1 y_3 \ge 3$	s.t. $\sum_i x_i = 1$	$\sum x_i = 1$
$2x_1+x_2-x_3\leq 1$	$2 y_1 + 5 y_2 + (-1) y_3 \ge -2$	$x_i \ge 0$	
$x_1, x_2, x_3 \geq 0$	$y_1, y_2, y_3 \ge 0$		$x_i \ge 0$