Dijkstra SSSP $O(m \log n)$ or $O(m+n \log n)$ (fibheap) while nodes unvisited: visit cheapest n , update neighbor costs to $\min (o l d, n+e d g e)$ Don't revisit visited nodes => can't handle negative edges	$\begin{aligned} & \text { Bellman-Ford SSSP } \begin{array}{rl} D_{v, n-1} & O(m n) \\ 0 & \text { if } k=0 \text { and } v=s \\ \text { if } k=0 \text { and } v \neq s \\ \min \left\{D_{v, k-1},\right. & \left.\min _{x \in N(v)} D_{x, k-1}+l \text { len }(x, v)\right\} \text { else } \end{array} \end{aligned}$ "Extend one edge at a time" Can detect negative cycles.	$\begin{aligned} & \frac{\mathrm{TSP}}{} T(n)=O\left(n^{2} 2^{n}\right), S(n)=O\left(n 2^{n}\right) \\ & \text { len }(x, t) \\ & \min _{t^{\prime} \in S, t^{\prime} \neq t, t^{\prime} \neq x} C\left(S-t, t^{\prime}\right)+\text { len }\left(t^{\prime}, t\right) \text { else } \end{aligned}$
Matrix APSP $O\left(n^{3} \log n\right)$ $\begin{aligned} & B_{i j}=\min _{k}\left\{A_{i k}+A_{k j}\right\} \quad(\leq 2 \text { edges }) \\ & C=B \times B(\leq 4 \text { edges }), \ldots \end{aligned}$ $O(\log n)$ squarings, mult is $O\left(n^{3}\right)$ Floyd-Warshall APSP $O\left(n^{3}\right)$ for k in [1, n]: forall i, j : $A_{i j}=\min \left\{A_{i j}, A_{i k}+A_{k j}\right\}$	Johnson APSP $O\left(m n+n^{2} \log n\right)$ Add dummy node with len 0 to every other, run Bellman to find shortest path, add that length of shortest path to all so that nonnegative, run Dijkstra from every node	<instructor photos for good luck elided> $e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, e^{-1}=\frac{1}{e}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}$ Hence $\left(1-\frac{1}{m}\right)^{m}<\frac{1}{e}$

Capacity Constraint $\forall e, f(e) \leq c(e)$
Flow Conservation $\forall v \notin\{s, t\}, \Sigma_{u} f(u, v)=\Sigma_{u} f(v, u)$
s-t Cut Partition of vertex set into A and B such that $s \in A$ and $t \in B$; cut capacity is $\Sigma_{\text {edges from } A \text { to } B} c(e)$
Skew-symmetry $f(u, v)=-f(v, u)$ allows us to add flows together
Residual Capacity $c_{f}(u, v)=c(u, v)-f(u, v)$
Augmenting Path s-t path of positive residual capacity
Maxflow-Mincut any s-t flow \leq maximum s-t flow \leq minimum s-t cut \leq any s-t cut [saturated edges], true for (ir)rational caps
Integral Flow if all capacities are integers, exists maximum flow in which all flows are integers
Bipartite Matching s to L, t to R, all edges capacity 1, use Ford-Fulkerson
Max-flow Min-cost Edges have cost $w(e)$ as well as capacities $c(e)$. Modify Ford-Fulkerson, always pick least-cost path

Algorithm	Description	Runtime	Notes [$F=$ max s-t flow]
Ford-Fulkerson	while ヨ augmenting path: push max flow along path	$O(F(m+n))$ F iterations, $(m+n)$ DFS	Rational capacities OK Irrational can be wrong/loops
Edmonds-Karp1	Pick largest capacity path	$O\left(m^{2} \log F\right)$ $O(m \log F)$ iterations	\exists s-t path with capacity at least $F / m ;$ Path found by binary search on answer method of finding max capacity then use dfs
Edmonds-Karp2	Pick shortest path	$O\left(n m^{2}\right)$ At most $n m$ iterations	$d(s, t)$ never decreases, increases by ≥ 1 every m iterations (BFS levels)

Linear Programs \{variables, objective, constraints\}, either Infeasible, Feasible and Bounded, or Feasible and Unbounded Von-Neumann's Theorem: lb=ub for all finite, 2 player zero sum games
Existence of Stable Strategies: Every finite player game (with each player having a finite number of strategies) has at least one (mixed-strategy) Nash equilibrium.

By convention, payoff matrix is row-player	Row Player picks max(min(col))	Col Player picks min(max(row))
$-1 / 2 \quad 3 / 4$	$\binom{-1 / 2}{1}\binom{3 / 4}{-3 / 2}$	$\begin{array}{rr} -1 / 2 & 3 / 4 \\ 1 & -3 / 2 \end{array}$
$1-3 / 2$	$\max (\min (-0.5 p+(1-p), 0.75 p-1.5(1-p)))$	$\min (\max (-0.5 p+0.75(1-p), p-1.5(1-p)))$

Simplex Jump to better neighboring corners, this works because feasible set is convex, worst case exponential number of corners (Klee-Minty cube: fix $\epsilon \in[0,0.5], 0 \leq x_{1} \leq 1, \epsilon x_{i} \leq x_{i+1} \leq 1-\epsilon x_{i}$ creates hypercube with 2^{d} corners)
Seidel m constraints, d dimensional variables - RANDOMLY add the constraints one by one, keep track of optimal so far, adjust if necessary. Expected: $O(d!m)$, Worst Case: $O\left(d!m^{2}\right)$
Ellipsoid binary search w/ ellipsoids, runs in polytime wrt $\mathrm{n}, \mathrm{d}, \mathrm{L}$ (constraints, dimensions, bits to represent coefficients) Karmarkar (kumarkar-angery) polytime interior-point method

Primal	Dual (note: Dual(Dual) = Primal)	P/D I O	U	\checkmark possible, x impossible	
maximize $c^{T} x$	minimize $y^{T} b$	\checkmark	x	\checkmark	I infeasible
subject to $A x \leq b, x \geq 0$	subject to $y^{T} A \geq c^{T}, y \geq 0$	O	x	$\checkmark \mathrm{x}$	O feasible, bounded
		U	$\checkmark \mathrm{xx}$	U unbounded	

Weak Duality x feasible for primal, y feasible for dual $=>c^{T} x \leq y^{T} b$
Strong Duality primal feasible and bounded => dual feasible and bounded, and $c^{T} x^{*}=\left(y^{*}\right)^{T} b$ (max primal = min dual)
Polynomial Time for some constant c, runtime is $O\left(n^{c}\right)$ where n is input size
Poly-Time Reducible $A \leq_{p} B$ (A polytime reducible to B) if can solve A in polytime given polytime blackbox for B
Many-one (Karp) Reduction from A to B: polytime-computable f st $x \in Y_{A} \Rightarrow f(x) \in Y_{B}$ and $x \in N_{A} \Rightarrow f(x) \in N_{B}$
\mathbf{P} decision problems solvable in polytime
NP decision problems w polytime verifiers, $\exists V(I, X)$ polytime st $I \in Y \Rightarrow \exists X, V(I, X)=Y$ and $I \in N \Rightarrow \forall X, V(I, X)=N$
$\mathbf{N P}$-Complete Q if 1. $Q \in \mathbf{N P}$ and 2 . for all $Q^{\prime} \in \mathbf{N P}, Q^{\prime} \leq_{p} Q$. If only 2 . satisfied, we call that $\mathbf{N P}$-Hard
NP-Complete PkProblems :thonk:

Circuit-SAT	Hamilton path	Integer LP B-SAT Vertex cover Cliquery integer LP Subset sum	3-COL k-COL Independent set Set cover

Scheduling Schedule n jobs w times $p_{j}>0$ on m machines, $\min _{\max }^{i}$ $\Sigma_{j \in S_{i}} p_{j}$; greedy 2OPT, sorted greedy 1.5 to 4/3 OPT
Vertex Cover Both 2OPT: take both endpoints of arbitrary edge; LP where $0 \leq x_{i} \leq 1, \min \Sigma_{i} x_{i}$ and round
(simply taking highest degree vertex can lead to $\log (\mathrm{n})$ times worse solution)
Set Cover Greedy is $O(k \ln n)$, more precisely at most $k \ln \frac{n}{k}+k$ sets $\left[n\left(1-\frac{1}{k}\right)^{k \ln n}<n\left(\frac{1}{e}\right)^{\ln n}=1\right.$]
Competitive Ratio (CR) Worst-case over possible future σ, i.e. $\max _{\sigma} \frac{A L G(\sigma)}{O P T(\sigma)}$
Better-Late-Than-Never has $C R \leq 2$, if $p=k r$ then $C R=2-\frac{r}{p}$. If modeled as zero-sum game, close to $C R=\frac{e}{e-1}$
Elevator CR: 2-E/S is optimal, If $\mathrm{E} \ll \mathrm{S}$, with randomization can get $C R=\frac{e}{e-1}$
List Update 4-competitive

$\max \left(x_{1}+3 x_{2}-2 x_{3}\right)$	
s.t. $\quad x_{1}+x_{2}+2 x_{3} \leq 2$	
$7 x_{1}+2 x_{2}+5 x_{3}$	≤ 6
$2 x_{1}+x_{2}-x_{3} \leq 1$	
x_{1}, x_{2}, x_{3}	≥ 0

\mathcal{P}_{1}
$\max _{x} \min _{j} \sum_{i} x_{i} U_{i j}^{1}$
s.t. $\sum_{i} x_{i}=1$

$x_{i} \geq 0$$\longrightarrow$| $\mathcal{P}_{2}-\mathrm{LP}$ |
| :---: |
| $\max _{x_{i}, v}$ |
| s.t. $v \leq \sum_{i} x_{i} U_{i j}^{1}, \forall j$ |
| $\sum_{i} x_{i}=1$ |
| $x_{i} \geq 0$ |

