
さ す が   

 

Dijkstra     SSSP    or (m )O log n
  (fibheap) (m )O + n log n  

 
while   nodes   unvisited:   
visit   cheapest   n,   update   neighbor  
costs   to   in(old, n dge)m  + e  
 
Don’t   revisit   visited   nodes   =>  
can’t   handle   negative   edges  

Bellman-Ford    SSSP     Dv, n 1− (mn)O  
                                     if  k  and v0 = 0 = s  
                                    if  k  and v =  ∞ = 0 / s  
in{D , en(x, )} elsem v, k 1−  min

x∈N (v)
Dx, k 1− + l v  

“Extend   one   edge   at   a   time”  
Can   detect   negative   cycles.  

TSP    (n) (n 2 ), S(n) (n2 )T = O 2 n  = O n  
en(x, )                                 if  S x, }l t = { t  

(S , t ) en(t , t)  else  min
t ∈S, t  = t, t  = x′ ′ / ′ /

C − t  ′ + l ′   

 

Matrix    APSP   (n )O 3 log n  
  ( edges) in {A }Bij = m k ik + Akj ≤ 2  

  ( edges),   ... C = B × B ≤ 4  
squarings,   mult   is (log )O n (n )O 3  

 
Floyd-Warshall       APSP      (n )O 3  
for   k   in   [1,n]:   forall   i,j:  

in{A , }Aij = m ij Aik + Akj  

Johnson    APSP (mn )O + n2 log n  
Add   dummy   node   with   len   0   to   every  
other,   run   Bellman   to   find   shortest  
path,   add   that   length   of   shortest   path  
to   all   so   that   nonnegative,   run   Dijkstra  
from   every   node   
 
 

<instructor   photos   for   good   luck   elided>  
(1 ) , e (1 )ex = lim

n→∞
+ n

1 n  1− = e
1 = lim

n→∞
− n

1 n  

Hence   1 )( − 1
m

m < e
1  

 
Capacity   Constraint    e, f (e) c(e)  ∀  ≤   
Flow   Conservation    v ∈ s, }, Σ  f (u, )  f (v, )  ∀ / { t  u v = Σu u  
s-t   Cut    Partition   of   vertex   set   into     and     such   that     and   ;   cut    capacity    is   A B  s ∈ A  t ∈ B  c(e)Σedges f rom A to B  
Skew-symmetry      allows   us   to   add   flows   together (u, ) (v, )f v =− f u  
Residual   Capacity    (u, ) c(u, ) (u, )cf v =  v − f v  
Augmenting   Path    s-t   path   of   positive   residual   capacity  
Maxflow-Mincut    any   s-t   flow maximum   s-t   flow minimum   s-t   cut any   s-t   cut   [saturated   edges],   true   for   (ir)rational   caps ≤ ≤ ≤  
Integral   Flow    if   all   capacities   are   integers,   exists   maximum   flow   in   which   all   flows   are   integers  
Bipartite   Matching    s   to   L,   t   to   R,   all   edges   capacity   1,   use   Ford-Fulkerson  
Max-flow   Min-cost    Edges   have   cost as   well   as   capacities .   Modify   Ford-Fulkerson,   always   pick   least-cost   path (e)w (e)c  
 

Algorithm  Description  Runtime  Notes   [ max   s-t   flow] F =  

Ford-Fulkerson  while   augmenting   path:  ∃  
push   max   flow   along   path  

(F (m ))O + n  
iterations,   DFS F m )( + n  

Rational   capacities   OK  
Irrational   can   be   wrong/loops  

Edmonds-Karp1  Pick   largest   capacity   path  (m )O 2 logF  
iterations (m )O logF  

s-t   path   with   capacity   at   least   ;  ∃ m  F /  
Path   found   by   binary   search   on   answer   method  
of   finding   max   capacity   then   use   dfs  

Edmonds-Karp2  Pick   shortest   path  (nm )O 2  
At   most     iterations mn  

never   decreases,   increases   by (s, )d t  
every iterations   (BFS   levels) ≥ 1 m  

 
Linear   Programs    {variables,   objective,   constraints},   either    Infeasible ,    Feasible   and   Bounded ,   or    Feasible   and   Unbounded  
Von-Neumann’s   Theorem :   lb   =   ub   for   all    finite,   2   player    zero   sum   games  
Existence   of   Stable   Strategies :   Every    finite    player   game   (with   each   player   having   a    finite    number   of   strategies)   has   at  
least   one   (mixed-strategy)   Nash   equilibrium.  

By   convention,   payoff   matrix   is   row-player  

 

Row   Player    picks   max(min(col))  

 
max(min(-0.5p+(1-p),   0.75p-1.5(1-p)))  

Col   Player    picks   min(max(row))  

 
min(max(-0.5p+0.75(1-p),   p-1.5(1-p)))  

 



さ す が   

Simplex    Jump   to   better   neighboring   corners,   this   works   because   feasible   set   is   convex,   worst   case    exponential    number  
of   corners   (Klee-Minty   cube:   fix       creates   hypercube   with     corners) 0, .5],  ε ∈ [ 0 , εx x  0 ≤ x1 ≤ 1  i ≤ xi+1 ≤ 1 − ε i 2d  
Seidel    m   constraints,   d   dimensional   variables   -   RANDOMLY   add   the   constraints   one   by   one,   keep   track   of   optimal   so   far,  
adjust   if   necessary.   Expected:   ,   Worst   Case:   (d!m)O (d!m )O 2  
Ellipsoid    binary   search   w/   ellipsoids,   runs   in    polytime    wrt   n,   d,   L   (constraints,   dimensions,   bits   to   represent   coefficients)  
Karmarkar     (kumarkar   -   a   n   g   e   r   y)    polytime   interior-point   method  

Primal  
maximize   xcT  
subject   to   x , xA ≤ b  ≥ 0  

Dual      (note:   Dual(Dual)   =   Primal)  
minimize   byT  
subject   to   A , yyT ≥ cT  ≥ 0  

P/D    I    O    U        ✓   possible,   x   impossible  
I        ✓    x    ✓        I   infeasible  
O       x    ✓   x         O   feasible,   bounded  
U       ✓    x   x         U   unbounded  

Weak   Duality      feasible   for   primal,   feasible   for   dual   =>   x y x bcT ≤ yT  
Strong   Duality    primal   feasible   and   bounded   =>   dual   feasible   and   bounded,   and     (max   primal   =   min   dual) x y ) bcT * = ( * T  
 
Polynomial   Time    for   some   constant   ,   runtime   is     where     is   input   size c (n )O c n  
Poly-Time   Reducible   (A   polytime   reducible   to   B)   if   can   solve   A   in   polytime   given   polytime   blackbox   for   B  ≤  BA p  
Many-one   (Karp)   Reduction    from   A   to   B:   polytime-computable     st     and   f (x)  x ∈ Y A ⇒ f ∈ Y B (x)  x ∈ NA ⇒ f ∈ NB  
P    decision   problems   solvable   in   polytime  
NP    decision   problems   w   polytime   verifiers,     polytime   st   and   V (I , )  ∃ X X , V (I , )  I ∈ Y ⇒ ∃  X = Y X , V (I , )  I ∈ N ⇒ ∀  X = N  
NP-Complete      if   1.   NP    and   2.   for   all   NP ,   .   If   only   2.   satisfied,   we   call   that    NP-Hard Q  Q ∈  Q′ ∈  ≤  Q  Q′ p  
NP-Complete   PkProblems   :thonk:  

Circuit-SAT  
3-SAT  
Vertex   cover  
Clique  

Hamilton   path  
Partition  
TSP  

Integer   LP  
Binary   integer   LP  
Subset   sum  

3-COL  
k-COL  
Independent   set  
Set   cover  

Scheduling    Schedule jobs   w   times     on machines,   ;   greedy   2OPT,   sorted   greedy   1.5   to   4/3   OPT n pj > 0 m in max  Σ  pm i j∈Si j  
Vertex   Cover    Both   2OPT:   take   both   endpoints   of   arbitrary   edge;   LP   where     and   round , min Σ x0 ≤ xi ≤ 1  i i  
(simply   taking   highest   degree   vertex   can   lead   to   log(n)   times   worse   solution)  
Set   Cover    Greedy   is   ,   more   precisely   at   most   sets    [ ] (k )O ln n k ln k

n + k (1 ) ( )n − k
1 k ln n < n e

1 ln n = 1  
 
Competitive   Ratio   (CR)    Worst-case   over   possible   future   ,   i.e.   σ axm σ

ALG(σ)
OPT (σ)  

Better-Late-Than-Never    has   ,   if   then   .   If   modeled   as   zero-sum   game,   close   to   RC ≤ 2 rp = k RC = 2 − r
p RC = e

e 1−  
Elevator    CR:   2   -   E/S   is   optimal,   If   E   <<   S,   with   randomization   can   get   RC = e

e 1−  
List   Update    4-competitive  

  

 

 


